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SUMMARY

Robot actuators have physical limitations in how fast they can change their

velocity. The more accurately planning algorithms consider these limitations, the

better the robot is able to perform.

Sampling-based algorithms have been successful in geometric domains, which ig-

nore actuator limitations. They are simple, parameter-free, probabilistically complete

and fast. Even though some algorithms like RRTs were specifically designed for kino-

dynamic problems, which take actuator limitations into account, they are less efficient

in these domains or are, as we show, not probabilistically complete.

A common approach to this problem is to decompose it, first planning a geometric

path and then time-parameterizing it such that actuator constraints are satisfied. We

improve the reliability of the latter step. However, the decomposition approach can

neither deal with non-zero start or goal velocities nor provides an optimal solution.

We demonstrate that sampling-based algorithms can be extended to consider ac-

tuator limitations in the form of acceleration limits while retaining the same advan-

tageous properties as in geometric domains. We present an asymptotically optimal

planner by combining a steering method with the RRT* algorithm. In addition, we

present hierarchical rejection sampling to improve the efficiency of informed kinody-

namic planning in high-dimensional spaces.

xiii



CHAPTER I

INTRODUCTION

1.1 Motivation

Robot actuators have physical limitations in how fast they can change their velocity.

The more accurately planning algorithms consider these limitations, the better the

robot is able to perform or the weaker (and thus cheaper) the actuators can be

designed to achieve the same level of performance. The physical limitations can be

considered by the planning algorithm at different levels of detail: The planner can

ignore them altogether or consider (with increasing level of detail) acceleration limits,

torque limits, current limits or temperature limits.

When ignoring physical limitations of the actuators and only planning geometri-

cally, sampling-based planners like rapidly-exploring random trees (RRTs) [30] have

been quite successful. They are simple, parameter-free, probabilistically complete

and can quickly find solutions in high-dimensional configuration spaces like that of

a 7-DOF manipulator in practice. Asymptotically optimal algorithms have been in-

troduced recently as well. Kinodynamic sampling-based planners for problems with

arbitrary differential constraints like torque limits, however, do not offer all of the

advantageous properties. They are slower and, as we show, not even probabilistically

complete in general.

A common approach to deal with the physical limitations of a manipulator’s actu-

ators is to decompose the problem and to first plan a geometric path, smooth it and

then find a time parameterization of the path that satisfies the actuator limits. While

we present some improvements to make the existing algorithm for the last step more

reliable, decomposing the problem into multiple steps comes with some drawbacks:

1



First, a path returned by a geometric planner is only guaranteed to be executable

by the robot if the start and goal states are at rest. Second, even if they are at rest

and even if we find the shortest path and the optimal time parametrization for it,

the resulting trajectory is not time-optimal. To overcome these drawbacks we must

combine collision avoidance and satisfying actuator limitations in one planning step.

We propose acceleration-limited planning as a middle ground between geomet-

ric planning and general kinodynamic planning. While acceleration-limited planning

cannot consider arbitrary differential constraints like torque limits, unlike geometric

planning, it takes actuator limitations into account on an abstract level in form of ac-

celeration limits. At the same time, we show that acceleration-limited planning can be

solved while retaining the advantageous properties of geometric planners. In particu-

lar, we present a probabilistically complete planner based on an RRT that has greater

computational efficiency than existing algorithms for general kinodynamic planning.

In addition, unlike general kinodynamic planning, acceleration-limited planning is

well suited for asymptotically optimal planners like the RRT*. We improve the ef-

ficiency of asymptotically optimal kinodynamic planners in high-dimensional spaces

by introducing hierarchical rejection sampling and demonstrate that they can effi-

ciently solve acceleration-limited planning problems in high-dimensional spaces, like

the 14-dimensional phase space of a 7-DOF robot arm.

Probabilistic completeness and asymptotic optimality properties of the presented

algorithms refer to the approximated system dynamics with acceleration limits and

not the original system dynamics with torque or other limits. With respect to the

original system, the trajectories planned by our algorithms are not optimal. In ad-

dition, with respect to the original system, our algorithms are not complete, not

correct or both, depending on whether the acceleration limits are chosen pessimisti-

cally, optimistically or somewhere in between. This is not surprising and a normal

consequence of approximating a system. Even an optimal trajectory for a system with

2



torque limits is not optimal for the original system, because torque limits are only an

approximation of temperature limits of the motors. The better the approximation,

the closer an optimal trajectory for the approximated system will follow the optimal

trajectory for the original system. Every planner or controller tries to find the right

compromise between an approximation that closely matches the original system and

that can be modeled and solved efficiently. We argue that considering acceleration

limits is a good compromise between not considering any actuator constraints by

planning geometrically and planning with full robot dynamics considering torque or

current limits. Or to phrase it differently, we claim that our approximation is wrong

(like every other one) but useful.

”Essentially, all models are wrong, but some are useful.”

— George E. P. Box [5]

1.2 Thesis Statement

Acceleration-limited planning models actuator constraints more accurately than ge-

ometric planning and, unlike full kinodynamic planning, can be solved efficiently,

without parameter tuning and in a probabilistically complete and asymptotically op-

timal manner.

1.3 Contributions and Overview

We make contributions in two areas. First, we improve an existing algorithm for time-

optimally following a given path, which is part of a decomposed planning approach

(Section 1.3.1). Second, we present an integrated sampling-based planning method

that considers both obstacles and acceleration limits (Sections 1.3.2 - 1.3.5).

3



1.3.1 Time-Optimal Path Following

There has been a considerable amount of work during the 1980s on time-optimally

following a given smooth geometric path considering the robot’s torque limits [4, 51,

47, 53, 50]. This approach reduces the problem to one degree of freedom along the

given path. For every point along the path a scalar acceleration along the given path

needs to be chosen. This acceleration is almost always at one of its two limits, which

are induced by the torque limits of the joints. The most critical part of the algorithm

is the identification of the switching points at which to switch between maximum and

minimum acceleration.

We show in Chapter 3 (published in [34]) that in order to make that approach

work reliably some numerical issues need to be addressed. We also demonstrate that

the algorithm can be simplified and more easily implemented robustly when only con-

sidering joint acceleration limits instead of joint torque limits. We also demonstrate

that the acceleration at one type of switching points is given incorrectly in all previ-

ous work and empirically determine the correct acceleration in our case. Building on

our work, Pham [48] derived the generally applicable acceleration at these switching

points. The combination of our contributions leads to a more reliable and useful

algorithm.

1.3.2 Incompleteness of Standard Kinodynamic RRTs

The RRT algorithm was originally introduced to deal with arbitrary kinodynamic

constraints like acceleration or torque limits. Unlike the geometric RRT, the kinody-

namic RRT does not rely on a steering method but instead samples control inputs for

extending the tree towards a sampled state. A steering method is able to connect any

two given states, i.e. solve the planning problem, while making one simplification: ig-

noring obstacles. In the geometric case the steering method is a straight-line segment

between the two states. Not relying on a steering method makes the kinodynamic
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RRT more generally applicable, since steering methods do not exist for all systems.

However, not relying on a steering method makes the kinodynamic RRT also less

efficient. Instead of making use of the steering method to extend the tree, the kino-

dynamic RRT samples multiple inputs and simulates the system forward for a small

time step. Different variants of the kinodynamic RRT exist. They differ in how they

choose the input and the time step. We show in Chapter 4 (published in [35]) that

in contrast to geometric RRTs the most common variant of the kinodynamic RRT is

not probabilistically complete.

1.3.3 Steering Method: Double-Integrator Minimum Time

In Chapter 5 (published in [36]) we present a steering method for acceleration-limited

planning. This steering method is non-iterative and thus can be quickly calculated.

Our work improves upon existing work [29, 28, 18] by being both detailed and correct.

1.3.4 Probabilistically Complete Planning

In Chapter 6 (also published in [36]) we combine above steering method with the

RRT algorithm. This yields an algorithm that, unlike the kinodynamic RRT, is both

probabilistically complete and computationally efficient. This approach is probabilis-

tically complete even if the start or goal states are not at rest, overcoming the first

drawback of the decomposed planning approach mentioned above.

1.3.5 Asymptotically Optimal Planning

To overcome the second drawback of the decomposed planning approach, the resulting

trajectory not being optimal, we combine our steering method with an asymptoti-

cally optimal RRT* planner [25] in Chapter 7. Unlike general kinodynamic planning,

acceleration-limited planning is well-suited for being solved by an asymptotically op-

timal sampling-based algorithm like the RRT*, since the steering method allows for

exactly and efficiently connecting two states, which is crucial for the rewiring step of
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those algorithms.

In order to achieve a near-optimal solution, asymptotically optimal sampling-

based planners need to densely fill the state space with samples. However, in high-

dimensional spaces this is very inefficient. In order to improve the efficiency and not

fill the whole state space with samples, additional information can be used to fill only

those parts of the state space that can improve the current solution. Following [12],

we call this the informed subset of the state space. Assume we can calculate a lower

bound on the optimal cost to move from the start through a sample and to the goal.

If a steering method is available, this bound can be calculated as the optimal cost

ignoring obstacles. If this lower bound is larger than the current solution, the sample

cannot improve the current solution, is not part of the informed subset and can be

ignored.

For systems without differential constraints and the Euclidean distance as cost

function, the informed subset is ellipsoidal [10]. This ellipsoidal subset can be param-

eterized and sampled directly [12].

For systems with differential constraints, e.g. acceleration limits, however, the

informed subset is not ellipsoidal but more complex. No methods to sample directly

within that space exist. Instead, samples within the informed subset can be found

using rejection sampling, i.e. sampling the full state space and rejecting those samples

that cannot improve the current solution. However, especially in high-dimensional

spaces, the informed subset might only be a tiny fraction of the whole state space.

In this case most samples get rejected and rejection sampling is very slow. In our

experiments up to 99.99% of all samples get rejected. This can lead to a sampling-

based planner spending most of its time rejection sampling.

To improve the efficiency of informed sampling without the need to explicitly pa-

rameterize the informed subset, we introduce hierarchical rejection sampling (HRS).

HRS hierarchically combines partial samples into larger samples, making accept/reject
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decisions at every level. When a partial sample is rejected, only the partial informa-

tion needs to be resampled. This leads to an efficiency improvement that is exponen-

tial in the number of dimensions. In our experiments HRS speeds up the convergence

of the RRT* planner for a 7-DOF manipulator with acceleration limits by up to two

orders of magnitude.

1.4 Problem Definition

Given a start state xinit and a set of goal states Xgoal, we want to find a trajectory

that connects the start state with any of the goal states. The trajectory must be a

valid trajectory for the following double integrator system with state vector [p,v],

which consists of joint positions p and velocities v, and input vector a

ṗ = v (1)

v̇ = a (2)

The solution trajectory must also satisfies the following constraints on position, ve-

locity and acceleration and must be collision-free.

pmin ≤ p ≤ pmax (3)

−vmax ≤ v ≤ vmax (4)

−amax ≤ a ≤ amax (5)

p ∈ Cfree (6)

The algorithm for time-optimal path following presented in Chapter 3 in combi-

nation with a geometric planner can solve this problem as long as the start state and

goal states are at rest.

The steering method presented in Chapter 5 solves the relaxed problem that ig-

nores Eq. 3 and 6. But in addition the steering method minimizes the trajectory

duration. We call this relaxed problem that ignores obstacles and minimizes trajec-

tory duration Double-Integrator Minimum Time (DIMT).
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The probabilistically complete RRT planner presented in Chapter 6 can solve

this problem independent of whether the start and goal states are at rest. The

asymptotically optimal RRT* planner presented in Chapter 7 solves this problem

time-optimally.
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CHAPTER II

RELATED WORK

2.1 Adaption of a Geometric Path

One approach of dealing with obstacles and actuator limitations is to decompose the

planning problem into two stages, first planning a geometric path avoiding obstacles

and then adapting this path and turning it into a time-parameterized trajectory such

that actuator limitations are satisfied. As long as the feasible accelerations always

contain an ε-neighborhood of zero, any geometric path can be followed by the robot.

The methods presented in this section all rely on a geometric path being given and

adapt it such that it can be executed on the robot. However, this is only guaranteed

to yield a valid trajectory if the start and goal states are at rest. Also, it does not

yield an overall optimal trajectory even if the geometric path was optimal and that

path is followed optimally.

2.1.1 Parabolic Blends

Some standard textbooks [7, 52] describe a method to generate a smooth trajectory

from waypoints such that acceleration and velocity limits are satisfied using linear

segments with parabolic blends. However, the approach is not directly applicable to

automatically generated paths with potentially dense waypoints. They assume that

the timing between the waypoints and thus the velocities for the linear segments are

already known. However, a path normally does not include timing for the waypoints.

Choosing the timing is not trivial. Generally we prefer to move fast, but if we move

too fast, neighboring blend segments might overlap and render the trajectory invalid.

Also, the blend segments do not follow the original path exactly and thus might be

colliding with obstacles.
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2.1.2 Time-Optimal Path Following

There has been much work on time-optimally following a given smooth path such

that joint acceleration or force/torque limits are satisfied. When following a given

path exactly, collisions do not need to be considered since the path is known to be

collision free. However, the path needs to be smooth to be able to follow it exactly

without stopping. This usually requires an intermediate step to turn a geometric

path consisting of straight-line segments into a smooth path.

The problem consists of finding an optimal time-parameterization s(t) of the path

such that the joint velocity and acceleration/force/torque limits are satisfied. The

limits on the joints can be converted into constraints on ṡ(t) and s̈(t). Thus, the

problem can be reduced to find the optimal scalar time-parameterization s(t) that

satisfies the constraints on its derivatives. Sections 2.1.2.1 and 2.1.2.2 present two

different methods of finding this optimal time-parameterization given the constraints

on its derivatives.

2.1.2.1 Numerical Integration along Extremal-Acceleration Trajectories

The minimum-time trajectory must always be at a limit, either an acceleration limit or

a velocity limit. Thus, the optimal trajectory can be found by numerically integrating

forward and backward in time at the minimum or maximum acceleration. The critical

part is to determine when to switch between minimum and maximum acceleration.

The points at which the optimal trajectory switches from minimum to maximum

acceleration are always at the velocity limit. The velocity limit defines a limit curve.

Along this curve the algorithm searches for switching points. This general approach

was introduced by Bobrow et al. [4] and by Shin and McKay [51]. This approach is

able to deal with more general actuator constraints than we do. For example, it can

limit torques in the presence of robot dynamics. Later work [57] also considered joint

velocity limits.
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The most critical part of the algorithm is finding the switching points. The original

work searches for switching points solely numerically, which is less efficient and makes

the algorithm more likely to fail, especially in the presence of discontinuities in the

path curvature. The following papers improve upon that by analyzing the conditions

for these switching points to be able to calculate them explicitly instead of searching

for them numerically. Even with this improvement one case remains that requires

numerical search. We will show that that case cannot happen when only considering

acceleration limits instead of torque limits and following a piecewise planar path.

[47] notes that points where the limit curve is non-differentiable are potential

switching points and gives a necessary condition for identifying them. It also states

that there is more than one valid acceleration at these switching points.

[53] lists all possible cases for switching points and gives necessary conditions for

some of them that can be used to explicitly calculate switching point candidates.

However, they do not give sufficient conditions for switching points. Also, one of the

cases still requires a numerical search. We will show that the case that requires a

numerical search in [53] cannot happen in our case with acceleration limits instead

of torque limits and a piecewise planar path. We only use a numerical search for

switching points caused by joint velocity limits.

[50] deals with those switching points along the limit curve where the acceleration

is not uniquely determined. However, we show in Chapter 3 that the acceleration

they claim to be optimal at such a point is incorrect.

In Chapter 3 we deal with a special case of this approach, i.e. acceleration limits

instead of more general torque limits, which leads to some simplifications. We also

present some numerical issues that need to be considered for making the algorithm

work robustly.
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2.1.2.2 Convex Optimization

Hauser [19] chooses a different approach for finding the optimal time parameterization.

They discretize the path and use convex optimization. This approach is slower and

less accurate, but is motivated by avoiding numerical issues and might be easier to

implement robustly.

2.1.3 Acceleration-Limited Shortcuts

Hauser and Ng-Thow-Hing [18] use limited-acceleration shortcuts to turn a path into

a smooth trajectory. They use a steering method similar to the one presented in this

thesis to generate the shortcuts. Shortcuts are checked for collision.

2.2 Sampling-Based Planning

2.2.1 Probabilistically Complete Planning

2.2.1.1 Geometric RRT

Sampling-based planners like RRTs [30] have been successfully applied to geometric

path planning problems for manipulators. In geometric domains they are both proba-

bilistically complete and can quickly find solutions in high-dimensional configuration

spaces like that of a 7-DOF manipulator in practice. While the probabilistic com-

pleteness of RRTs in geometric domains is based on their ability to densely explore

the whole configuration space, in practice, their computational efficiency is based on

the ability to find a solution without exploring much. We claim that the efficient

performance of RRTs in geometric domains is largely based on the availability of

a fast-to-compute steering method. A steering method is able to exactly and opti-

mally connect any two states while ignoring obstacles. In the case of geometric path

planning this steering method is trivial and returns a straight line. The distance

function used in the RRT is based on the steering method, returning the length of

the straight-line path, i.e. the Euclidean distance. The ability of the steering method

to exactly connect two states is also useful for improving a path through shortcutting,
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to connect the two trees in a bidirectional RRT planner, for the rewiring step of an

RRT* [25] or for exactly reaching a goal configuration.

By ignoring velocities completely, geometric planning makes the assumption that

the direction of motion can be changed instantaneously, which is impractical in reality

at high speeds. While the path can be post-processed to satisfy acceleration limits as

described in Section 2.1, this cannot solve problems involving non-zero start or goal

states and does not return an optimal solution. We have used geometric planning in

some of our previous work [32, 33] resulting in slow robot motion.

2.2.1.2 Kinodynamic RRT with Incremental Simulator

The kinodynamic RRT as presented in [38, 39, 40, 41] is able to deal with general

differential constraints of the form ẋ = f(x,u) including problems involving full

robot dynamics as well as the acceleration-limited problem considered here. Since

efficient steering methods are generally not available, the kinodynamic RRT does not

make use of them, but instead only requires an incremental simulator, which can

forward simulate the system for a given time step ∆t and control input u. It also

requires a distance function ρ : X × X → [0,∞), which establishes a concept of

closeness between states. Most commonly the Euclidean distance is used.

Algorithm 1 shows the construction of a kinodynamic RRT. Lavalle and Kuffner

introduced different variants of the kinodynamic RRT algorithm. All variants iter-

atively grow a tree from xinit. In each iteration a state xrand is sampled (line 4).

Then the node xnear closest to the sampled state according to the provided distance

function (line 5) is selected. This is visualized in Figure 1(a). The NewState function

(line 6) extends the tree from the selected node by applying some control input u ∈ U

for some time step ∆t. Variants of the RRT algorithm differ in how ∆t and u are

chosen.

Early work on RRTs [38, 39] used a fixed time step ∆t and chose the best input
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Algorithm 1: BuildRRT(xinit,Xgoal)

1 V ← {xinit};
2 E ← ∅;
3 while V ∩ Xgoal = ∅ do
4 xrand ← SampleState();
5 xnear ← NearestNeighbor(V,xrand);
6 (xnew,unew,∆t)← NewState(xnear,xrand);
7 if CollisionFree(xnear,xnew,unew,∆t) then
8 V ← V ∪ {xnew};
9 E ← E ∪ {(xnear,xnew,unew,∆t)};

10 return (V,E);

u. Each input u is associated with a successor state, in which the system will end

up when applying the input for a fixed time ∆t from the current node. ”Best input”

refers to the input whose successor state is closest to the sampled state. This is

visualized in Figure 1(b) and formalized in Algorithm 2.

If U is finite, the best input in line 1 of Algorithm 2 can be chosen by forward

simulating all inputs and evaluating all resulting successor states. If U is continuous,

Algorithm 2: NewState(xnear, xrand)
(using fixed time step and best-input extension)

1 unew ← arg minu∈U{ρ(Simulate(xnear,u,∆t),xrand)};
2 xnew ← Simulate(xnear,unew,∆t) ;
3 return (xnew,unew,∆t);

xinit
xrand

xnear

(a) Select nearest node

xinit
xrand

xnew

(b) Select best input

Figure 1: Visualization of best-input RRT variant. The shown system is a double
integrator with ẋ1 = x2, ẋ2 = u and finite input set U .
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this is not possible. Instead, an analytical method must be used for an exact solution.

However, often the best input is approximated instead by choosing the best one out

of a finite number of sampled inputs.

Later, [40, 41] generalized the RRT algorithm and gave choices for the implemen-

tation of the NewState function. The time step ∆t can either be fixed or variable and

either the best or a random input u can be chosen. Algorithm 1 is general enough to

allow all these variations. However, when the time step is fixed, the algorithm and

data structures can be simplified by leaving out ∆t.

The performance of the kinodynamic RRT depends on a good distance function.

In the lack of a fast-to-compute and high-quality distance function, most work uses a

Euclidean distance, which does not give a good approximation of the real cost and hin-

ders the efficient growth of the tree. Unlike a steering method and the distance func-

tion derived from it, the Euclidean distance is not even aware of the fact that velocity

is the derivative of position. Our experiments show that a kinodynamic RRT with a

Euclidean distance function is not able to solve the problem efficiently. A weighted

Euclidean distance function [40] might improve performance but requires tuning the

weights to the specific problem. Our distance metric, in contrast, is parameter-free.

In addition, as we show in Chapter 4, the most common variant of the kinodynamic

RRT, which grows the tree by a fixed time step using the best control input, is not

probabilistically complete in general.

2.2.2 Asymptotically Optimal Planning

Karaman and Frazzoli [25] introduced asymptotically optimal sampling-based plan-

ning algorithms for systems without differential constraints. The algorithms they in-

troduced include PRM*, RRG* and RRT*. Others have proposed RRT#[2], FMT*[20],

BIT*[13]. All of these algorithms optimally connect nodes within a given distance

of each other. This connection threshold shrinks as the number of nodes increases,
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avoiding large numbers of connection attempts and improving the efficiency of the

algorithms.

Karaman and Frazzoli also extended their work to systems with differential con-

straints that have steering methods available [23]. Steering methods exist for example

for the Dubins car, Reeds-Shepp car and double integrators, which we use.

Section 2.2.2.1 deals with the connection threshold used by all asymptotically

optimal planners listed above. It provides an argument why we use an infinite con-

nection threshold for our experiments. The RRT* algorithm, which we use for our

experiments, is presented in detail in Section 2.2.2.2.

2.2.2.1 Connection Threshold

According to [25], to guarantee asymptotic optimality for systems without differential

constraints, the connection threshold r(n) must be chosen such that

r(n) =

(
γ

ξd

log(n)

n

) 1
d

(7)

where n is the number of uniform samples in the state space X, d is the number of

dimensions, ξd is the volume of a unit ball in a d-dimensional space and γ must satisfy

γ > 2

(
1 +

1

d

)
µ(X) (8)

where µ(X) is the volume of the state space.

A connection threshold directly at the lower bound usually gives good results and

is therefore common practice. However, this does not mean that the lowest possible

connection threshold guaranteeing asymptotic optimality necessarily also leads to the

fastest convergence. How to choose the connection threshold for best convergence is

an open problem.

The connection threshold above only guarantees asymptotic optimality for systems

without differential constraints. Determining the connection threshold and proving

asymptotic optimality is more involved for systems with differential constraints. This
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is because even two arbitrarily close states in the Euclidean space cannot necessarily

be connected with arbitrarily small cost. Karaman and Frazzoli [23] present an RRT*

variant explicitly for systems with differential constraints and derive a connection

threshold for it.

For systems with differential constraints the connection threshold is a cost l(n).

Connections are attempted to all states that can be reached with a cost of at most

l(n). According to [23], to guarantee asymptotic optimality, l(n) must be chosen such

that the set of all states reachable with a cost of at most l(n) includes a ball of radius

r(n) as defined in Eq. 7 with γ being ”an appropriate constant”. It is unclear what

”appropriate” means or how to choose γ. In addition, it is not trivial to calculate

l(n) such that the space reachable with a cost of at most l(n) contains a ball of a

specific size. Karaman and Frazzoli [23] do not describe how they chose l(n) for their

example systems.

Work that uses the kinodynamic RRT* [23] often uses a connection threshold

different from [23]. However, none of the work mentions the fact that the connection

threshold is chosen differently or explains why. [45] and [17] choose l(n) = r(n), which

does not guarantee that the space reachable with a cost of at most l(n) contains a ball

of radius r(n). They only state that γ is ”constant” without any further explanation.

So, it is unclear whether their algorithm is asymptotically optimal. [56] uses an

infinite or constant finite connection threshold. Unlike [23], their threshold does not

approach zero. While this guarantees asymptotic optimality, the paper does not

provide a reason why they chose to differ from [23].

Like [56] we choose an infinite connection threshold in our experiments. We de-

viate from [23] because for systems with differential constraints it is unclear how to

choose a finite and shrinking connection threshold such that asymptotic optimality is

guaranteed.
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2.2.2.2 RRT* Algorithm

The RRT* algorithm is shown in Algorithm 3. It iteratively builds a tree. Like the

RRT it samples a state (line 3), finds the closest node (line 4) and grows the tree

from it to the sample. Closeness is measured by the cost c of the trajectory returned

by the steering method.

The standard RRT ends here and repeats the process. The RRT* continues by

trying to find an alternative, lower-cost parent within the backward neighborhood

of the sample (lines 6-12). The backward neighborhood of the sample consists of

all nodes that can be connected to the sample with a trajectory of cost less than

l(n). l(n) is the distance threshold explained in Section 2.2.2.1. In our experiments

l(n) = ∞. The sample is then added to the tree as a new node with the parent

resulting in the lowest cost.

The algorithm then checks if any of the nodes in the forward neighborhood of the

new node can reduce their cost by choosing the new node as their new parent and

rewires them if the cost can be reduced (lines 15-20).

Note that unlike [23] we are using two different neighborhoods for finding the

parent and rewiring. Also note that unlike in the traditional RRT* algorithm we are

not making a small step toward the sample, but instead grow the tree all the way to

the sample. This is because making a small step results in the algorithm filling the

space as the tree is growing outwards, which is inefficient in high-dimensional spaces.

2.2.3 LQR-RRT(*)

Recently, there have been efforts [14, 45, 17, 56] to use a more accurate distance metric

by using LQR methods from optimal linear control. These algorithms assume linear

system dynamics with a quadratic cost functional. This leads to an LQR problem,

which can be solved for the optimal trajectory and cost. Sampling of control inputs is

avoided in [45, 17, 56]. The solution to the LQR problem gives an optimal trajectory.
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Algorithm 3: RRT*

1 V ← {xinit}; E ← ∅;
2 for n = 1..N do
3 xrand ← Sample();
4 xnearest ← Nearest(V,xrand);
5 if CollisionFree(Steer(xnearest,xrand)) then
6 Xnear ← {x ∈ V : c(Steer(x,xrand)) ≤ l(n)};
7 xmin ← xnearest;
8 cmin ← Cost(xnearest) + c(Steer(xnearest,xrand));
9 foreach xnear ∈ Xnear do

10 if Cost(xnear) + c(Steer(xnear,xrand)) < cmin

∧ CollisionFree(Steer(xnear,xrand)) then
11 xmin ← xnear;
12 cmin ← Cost(xnear) + c(Steer(xnear,xrand));

13 V ← V ∪ {xrand};
14 E ← E ∪ {(xmin,xrand)};
15 Xnear ← {x ∈ V : c(Steer(xrand,x)) ≤ l(n)};
16 foreach xnear ∈ Xnear do
17 if Cost(xrand) + c(Steer(xrand,xnear)) < Cost(xnear)

∧ CollisionFree(Steer(xrand,xnear)) then
18 xparent ← Parent(xnear);
19 E ← E \ {(xparent,xnear)};
20 E ← E ∪ {(xrand,xnear)};
21 return (V,E);

For nonlinear systems LQR requires linearization. Thus, the distance function is only

a good approximation in the neighborhood of the linearization point, which hinders

efficient exploration. Linearization also requires solving the LQR problem for each

new sample, which requires numerical integration and is computational expensive.

For linear systems like the acceleration-limited problem considered here LQR is able

to consider the differential constraints exactly. However, the LQR problem can only

deal with quadratic costs on the input and state, but not limits like our problem

involves. Transforming acceleration limits into a quadratic cost requires parameter

tuning. Our approach does not.
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2.2.4 Adaptive Sampling

We present hierarchical rejection sampling to speed up asymptotically optimal plan-

ning with differential constraints in high-dimensions. Hierarchical rejection sampling

is an efficient implementation of informed sampling described in Section 2.2.4.1. Other

methods to adapt the distribution of samples and graph nodes have been proposed

as well. Those are described in Sections 2.2.4.2 and 2.2.4.3.

2.2.4.1 Informed Sampling

We want to find the optimal trajectory from the start state xstart to the goal state

xgoal according to some given cost function. The trajectory must completely lie in

the obstacle-free space Xfree and potentially satisfy differential constraints of the form

ẋ = f(x,u) with u ∈ U . Note that for a more concise presentation we assume a

single goal state in this section. The approach can easily be extended to a finite set

of goal states. In our experiments we actually have multiple goal states.

Let cbest be the cost of the current solution or infinite if no solution has been found

yet. Informed sampling excludes samples that cannot improve cbest.

Let c∗(x1,x2) be the cost of the optimal trajectory from x1 to x2. A sample

can only improve the current solution if the cost of the optimal solution trajectory

through x is less than cbest, i. e.

c∗(xstart,x) + c∗(x,xgoal) < cbest (9)

c∗(x1,x2) is generally unknown. Instead we use a heuristic estimate c(x1,x2). c is

called admissible if

∀x1,x2 ∈ X : c(x1,x2) ≤ c∗(x1,x2) (10)

Informed sampling uses such an admissible heuristic estimate to restrict samples

to the subset of the state space that can potentially improve the current solution.
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Following [12], we call this the informed subset of the state space. The set includes

all states x satisfying

c(xstart,x) + c(x,xgoal) < cbest (11)

Because of Eq. 10, Eq. 9 implies Eq. 11, i.e. the informed subset includes all

states that can improve the current solution.

If a steering method is available, the cost of the trajectory returned by the steering

method can be used as the heuristic cost estimate, i.e.

c(x1,x2) = c(Steer(x1,x2)) (12)

In our experiments we make use of a steering method. The cost returned by the

steering method is a lower bound on the optimal cost, since the steering method

returns the optimal trajectory for the relaxed problem without obstacles.

2.2.4.2 Informed Graph Pruning

Informed graph pruning [24] is closely related to informed sampling. But instead of

rejecting samples or areas of the state space, it rejects nodes in the graph. Thus,

this cannot reject samples until they have been added to the graph. In contrast,

informed sampling can reject samples before adding them to the graph. Informed

graph pruning uses the graph as additional information. Instead of using a lower

bound on the optimal cost-to-come, it uses the cost-to-come along the graph. This is

advantageous because the graph is more informed as it considers obstacles. However,

the cost along the graph gives an upper bound on the optimal cost-to-come instead

of a lower bound. Thus, there is a chance that pruned nodes could have contributed

to the optimal solution once the graph becomes closer to optimal.

The samples rejected by informed sampling are a subset of those rejected by

informed graph pruning. Therefore, hierarchical rejection sampling can provide an

improvement even in combination with graph pruning. We evaluate the performance

gain of informed graph pruning in our experiments in Section 7.3.
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2.2.4.3 Biased Sampling

There has been a lot of work on improving the efficiency of sampling-based planners

through adaption of the sampling distribution. The distribution has been biased

toward the current solution trajectory [1, 44] or areas of the state space with a high

difficulty, because of low manipulability [43] or narrow passages [37, 55].

Unlike informed sampling, sample biasing still accepts samples that cannot im-

prove the solution. These sample schemes might lead to better or worse performance.

They include a parameter to control the strength of the bias, which affects perfor-

mance and has to be tuned. Informed sampling in contrast is parameter-free. It

might not always lead to better performance, but it never causes worse performance.

If desired, some of these biased sampling schemes [1, 44, 43] can be combined with the

work presented here to improve their performance. Note that special care has to be

taken of the connection threshold when using biased sampling, because the standard

threshold only guarantees asymptotic optimality for a uniform sampling distribution.

2.3 Trajectory Optimization

Trajectory optimizers like e.g. CHOMP [49] and STOMP [21] can handle very general

dynamics and task constraints and can produce smooth trajectories. They can be

applied to problems our approach cannot. However, they are prone to getting stuck

in local optima. Since obstacles and other hard constraints are also represented as

cost, a locally-optimal trajectory might be infeasible. Getting a trajectory optimizer

to output feasible and good-quality trajectories often involves tuning parameters to

the specific problem. For example the weights of different parts of the cost functional

are crucial. In contrast, our algorithm does not have any parameters that need to

be tuned. CHOMP and STOMP use randomness to evade local optima, the amount

of which is subject to tuning again. Our planner could be used to provide a better

initial guess to a trajectory optimizer.
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We used an optimization-based approach in one of our previous papers [54], but in-

stead of optimizing a discretized trajectory, we optimized gains for a set of controllers

and the switching times between them.

2.4 Double-Integrator Minimum Time

Some previous work also exploits the fact that the double-integrator minimum time

(DIMT) problem can be solved efficiently. Kröger et al. [27, 29, 28] use it for online

trajectory generation. However, their work does not plan or check collisions. They

just generate a time-optimal trajectory to the given goal state and follow it in real-

time. They assume that a planner or some other program on top of their controller

chooses the intermediate goal states wisely. Their early work [27] only deals with a

simpler case of the DIMT problem assuming a zero velocity at the goal (Type I in

their nomenclature). Their later work [29, 28] deals with a more general and complex

problem, which includes jerk limits (Type IV). Since that problem is very complex,

they only describe part of its solution in detail and never describe the solution to the

problem we are solving, which is a Type II problem in their nomenclature. Based on

their high-level description we attempt to note the differences to their algorithm in

Chapter 5.

Hauser et al. [18] use the solution to the DIMT problem to smooth a given path

using given acceleration limits. They try to solve the same DIMT problem as our

approach. While [18] describes the algorithm in detail, parts of their algorithm and

equations are incorrect, since they do not consider infeasible time intervals as will be

explained in Chapter 5.

We have used a double-integrator system to generate motion for a robot arm in

one of our previous papers [31]. In that work the arrival time was given and we only

determined whether reaching the goal at the given time was possible. Also, there was

no collision checking.
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CHAPTER III

TIME-OPTIMAL PATH FOLLOWING

3.1 Overview

To deal with the complexity of planning a robot motion, the problem is often sub-

divided into two or more subproblems. The first subproblem is that of planning a

geometric path through the environment, which does not collide with obstacles. In an

additional step this path is converted into a time-parametrized trajectory that follows

the path within the capabilities of the robot. Preferably we are looking for a near-

optimal trajectory according to some optimality criterion. In practice the capabilities

of the robot cannot be expressed exactly. Thus, the capabilities of the robot are nor-

mally approximated by using some model of the robot and limiting certain quantities.

One option is to model the dynamics of the robot and limit the torques that can be

applied by the joints. In this thesis we are using limits on joint accelerations and

velocities which are often available.

This chapter presents a method to generate the time-optimal trajectory along a

given path within given bounds on accelerations and velocities. The path can be given

in any arbitrary configuration space. However, we assume that the acceleration and

velocity of individual coordinates are limited. Thus, the configuration coordinates

need to be chosen such that they match the quantities that need to be limited. For a

robot manipulator the coordinates are typically chosen to match joints of the robot.

Thus, we will refer to the limits as joint acceleration and joint velocity limits. We

assume that the path is differentiable with respect to some path parameter s. This

is a weak assumption. If the path was not differentiable at a point, the robot would

have to come to a complete stop at that point in order to follow the path. Then the
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path could be split at that point and the method presented here could be applied to

each part of the path. We also assume that the path curvature is piecewise-continuous

and that for every piece the path is coplanar.

The output of a typical geometric path planner is a path in configuration space

consisting of continuous straight line segments between waypoints. Such a path is not

differentiable at the waypoints. Thus, we also present a preprocessing step to make

such a path differentiable by adding circular blends.

3.2 Contribution

Our algorithms build on existing work presented in Section 2.1.2.1. The novel con-

tributions of this work are the following:

• Combining path-following with a preprocessing step that converts the output

of typical path planners to a differentiable path.

• A more thorough derivation of the constraints in the phase plane than [51]. At

the same time our derivation is simpler since we only cover a special case of

[51].

• We show that for the case of constraints on only acceleration and piecewise-

planar paths, the limit curve is never continuous and differentiable at a switching

point. Thus, we can calculate all switching points along the acceleration limit

curve explicitly. Previous work relied at least partially on numerical search, but

also handled the more general case of torque constraints.

• [50] applies an incorrect optimal acceleration at switching points where the limit

curve is non-differentiable. We demonstrate this and provide an alternative

solution.

• We provide sufficient conditions for switching points instead of just necessary

ones.
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Figure 2: Circular blend around waypoint

• An improvement to the algorithm that makes it more robust in the presence of

numerical inaccuracies.

• Our algorithm is demonstrated to be sufficiently robust to follow over 100 ran-

domly generated paths without failing.

• We provide open-source software, available for download at

http://www.golems.org/node/1570.

3.3 Path Preprocessing

Common geometric path planners like PRMs or RRTs usually output the resulting

path as a list of waypoints, which are connected by straight lines in configuration

space. At a waypoint the path is changing its direction instantaneously and thus is

not differentiable. In order to follow such a path exactly, the robot would have to come

to a complete stop at every waypoint. This would make the robot motion very slow

and look unnatural. Therefore, we add circular blends around the waypoints, which

make the path differentiable. If the path is already differentiable, the preprocessing

described in this section can be omitted.

We are looking for a circular segment that starts tangential to the linear path

segment before the waypoint and ends tangential to the linear path segment after the

waypoint. We also need to ensure that the circular segment does not replace more
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than half of each of the neighboring linear segments. Otherwise we might not get

a continuous path. In addition, we allow the enforcement of a maximum deviation

from the original path.

First, we define some quantities that are helpful to define the circle (see also

Figure 2). The unit vector ŷi pointing from waypoint qi−1 to qi is given by

ŷi =
qi − qi−1

|qi − qi−1|
(13)

The angle αi between the two adjoining path segments of waypoint qi is given by

αi = arccos (ŷi · ŷi+1) (14)

The distance `i between waypoint qi and the points where the circle touches the linear

segments is given as

`i = min

{
||qi − qi−1||

2
,
||qi+1 − qi||

2
,
δ sin αi

2

1− cos αi

2

}
(15)

where the first two elements give the maximum possible distances such that the

circular segment does not replace more than half of the adjoining linear segments and

the last element limits the radius to make sure the circlular segment stays within a

distance δ from waypoint qi.

Given the quantities above, we can now define the circular segment. The circle is

defined by its center ci, its radius ri and two vectors x̂i and ŷi spanning the plane

in which the circle lies. The vectors x̂i and ŷi are orthonormal. x̂i points from the

center of the circle to the point where the circle touches the preceding linear path

segment. ŷi is the previously defined direction of the preceding linear segment.

ri =
`i

tan αi

2

(16)

ci = qi +
ŷi+1 − ŷi

||ŷi+1 − ŷi||
· ri

cos αi

2

(17)

x̂i =
qi − `iŷi − ci
||qi − `iŷi − ci||

(18)
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Given these quantities specifying the circle, we can calculate the robot configura-

tion q for any point on the circular segment as a function f(s) of the arc length s

traveled from the start of the path. As we are currently only considering the current

circular path segment, we assume si ≤ s ≤ si + αiri, where si specifies the start of

the circular segment. Similarly we can calculate the first and second derivatives of

the function f(s). Note that these are not time-derivatives but derivatives by s. We

will make use of these derivatives later.

q = f(s) = ci + ri

(
x̂i cos

(
s

ri

)
+ ŷi sin

(
s

ri

))
(19)

f ′(s) = −x̂i sin

(
s

ri

)
+ ŷi cos

(
s

ri

)
(20)

f ′′(s) = − 1

ri

(
x̂i sin

(
s

ri

)
+ ŷi cos

(
s

ri

))
(21)

3.4 Reduction to One Dimension

The approach we are using was originally proposed in [51], which finds a minimum-

time trajectory that satisfies torque limits on the joints. In constrast, we assume

acceleration and velocity limits on the joints. Acceleration limits are a special case of

torque limits. Using acceleration instead of torque limits results in a simpler problem

and a simpler derivation of the following equations than in [51]. Unlike [51] and like

[57], we are also considering velocity limits on the joints.

Because the solution is constrained to follow a given path exactly, the problem

can be reduced to one dimension: choosing the velocity ṡ = ds
dt

for every position s

along the path.

A path of length sf is given as a function f : [0, sf ]→ Rn. The configuration q at

a point s along the path is given by

q = f(s) 0 ≤ s ≤ sf (22)

where s can be an arbitrary parameter. We will assume it is the arc length traveled

since the start of the path. We can also define the joint velocities and accelerations
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with respect to the parameter s.

q̇ =
d

dt
f(s) =

d

ds
f(s)

ds

dt
= f ′(s) ṡ (23)

q̈ = f ′(s) s̈+ f ′′(s) ṡ2 (24)

If s is the arc length, ṡ and s̈ are the velocity and acceleration along the path, then

f ′(s) is the unit vector tangent to the path and f ′′(s) is the curvature vector. [50]

The constraints in the high-dimensional joint space need to be converted into con-

straints on the scalar path velocity ṡ(s) and path acceleration s̈(s, ṡ). The constraints

on joint accelerations result in constraints on the acceleration and velocity along the

path as shown in Section 3.4.1. The constraints on joint velocities result in constraints

on the velocity along the path as presented in Section 3.4.2.

3.4.1 Joint Acceleration Limits

We have constraints on the joint accelerations given as

−q̈max
i ≤ q̈i ≤ q̈max

i ∀i ∈ [0, ..., n] (25)

where q̈i is the ith component of vector q̈. Although the universal quantifier is

ommited in the following, all the following inequalities have to hold for all i ∈ [0, ..., n].

(25)⇔ −q̈max
i ≤ f ′i(s) s̈+ f ′′i (s) ṡ2 ≤ q̈max

i (26)

If f ′i(s) > 0:

(26)⇔ −q̈
max
i

f ′i(s)
− f ′′i (s) ṡ2

f ′i(s)
≤ s̈ ≤ q̈max

i

f ′i(s)
− f ′′i (s) ṡ2

f ′i(s)
(27)

⇔ −q̈
max
i

|f ′i(s)|
− f ′′i (s) ṡ2

f ′i(s)
≤ s̈ ≤ q̈max

i

|f ′i(s)|
− f ′′i (s) ṡ2

f ′i(s)
(28)

If f ′i(s) < 0:

(26)⇔ −q̈
max
i

f ′i(s)
− f ′′i (s) ṡ2

f ′i(s)
≥ s̈ ≥ q̈max

i

f ′i(s)
− f ′′i (s) ṡ2

f ′i(s)
(29)

⇔ q̈max
i

|f ′i(s)|
− f ′′i (s) ṡ2

f ′i(s)
≥ s̈ ≥ −q̈

max
i

|f ′i(s)|
− f ′′i (s) ṡ2

f ′i(s)
(30)
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If f ′i(s) = 0 and f ′′i (s) 6= 0:

(26)⇔ −q̈
max
i

|f ′′i (s)|
≤ ṡ2 ≤ q̈max

i

|f ′′i (s)|
(31)

⇔ ṡ ≤

√
q̈max
i

|f ′′i (s)|
(32)

If f ′i(s) = 0 and f ′′i (s) = 0, Eq. 26 is always satisfied. Eq. 28 and Eq. 30 are equivalent.

Thus, the limits on the path acceleration s̈ are

s̈min(s, ṡ) ≤ s̈ ≤ s̈max(s, ṡ) (33)

with

s̈min(s, ṡ) = max
i∈[1,...,n]
f ′i(s)6=0

(
−q̈max

i

|f ′i(s)|
− f ′′i (s)ṡ2

f ′i(s)

)
(34)

s̈max(s, ṡ) = min
i∈[1,...,n]
f ′i(s)6=0

(
q̈max
i

|f ′i(s)|
− f ′′i (s)ṡ2

f ′i(s)

)
(35)

The limit on the path acceleration also constrains the path velocity, because in

order for a path velocity to be feasible we need s̈min(s, ṡ) ≤ s̈max(s, ṡ).

We now derive the path velocity limit ṡmax
acc (s) caused by acceleration constraints.

We get rid of the min and max functions in Eq. 34 and 35 by requiring the inequality

to hold for all possible combinations of arguments to the min and max functions.

s̈min(s, ṡ) ≤ s̈max(s, ṡ) (36)

⇔
(
q̈max
i

|f ′i(s)|
− f ′′i (s)ṡ2

f ′i(s)

)
−

(
−q̈max

j∣∣f ′j(s)∣∣ − f ′′j (s)ṡ2

f ′j(s)

)
≥ 0

∀i, j ∈ [1, ..., n], f ′i(s) 6= 0, f ′j(s) 6= 0 (37)

⇔−
(
f ′′i (s)

f ′i(s)
−
f ′′j (s)

f ′j(s)

)
ṡ2 +

(
q̈max
i

|f ′i(s)|
+

q̈max
j∣∣f ′j(s)∣∣

)
≥ 0

∀i, j ∈ [1, ..., n], f ′i(s) 6= 0, f ′j(s) 6= 0 (38)
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⇔−
∣∣∣∣f ′′i (s)

f ′i(s)
−
f ′′j (s)

f ′j(s)

∣∣∣∣ ṡ2 +

(
q̈max
i

|f ′i(s)|
+

q̈max
j∣∣f ′j(s)∣∣

)
≥ 0

∀i ∈ [1, ..., n], j ∈ [i+ 1, ..., n], f ′i(s) 6= 0, f ′j(s) 6= 0 (39)

This gives a set of downward-facing parabolas in ṡ horizontally centered around the

origin. Each parabola is positive within an interval around 0, which is the interval

the feasible velocities may lie in. The positive bound of the interval can be found by

setting the parabola equation to zero.

−
∣∣∣∣f ′′i (s)

f ′i(s)
−
f ′′j (s)

f ′j(s)

∣∣∣∣ ṡ2 +

(
q̈max
i

|f ′i(s)|
+

q̈max
j∣∣f ′j(s)∣∣

)
= 0 (40)

⇔ṡ =

√√√√√ q̈max
i

|f ′i(s)|
+

q̈max
j

|f ′j(s)|∣∣∣f ′′i (s)

f ′i(s)
− f ′′j (s)

f ′j(s)

∣∣∣ (41)

The interval of feasible path velocities ṡ is defined by the intersection of the feasible

intervals of all parabolas. Thus, the upper bound for the path velocity is the minimum

of all upper bounds given in Eq. 41. Combining this with the case from Eq. 32, the

constraint on the path velocity caused by joint acceleration limits is given by

ṡ ≤ ṡmax
acc (s) (42)

with

ṡmax
acc (s) = min


min

i∈[1,...,n]
j∈[i+1,...,n]
f ′i(s)6=0
f ′j(s)6=0

f ′′i (s)

f ′
i
(s)
−

f ′′j (s)

f ′
j
(s)
6=0

√√√√√ q̈max
i

|f ′i(s)|
+

q̈max
j

|f ′j(s)|∣∣∣f ′′i (s)

f ′i(s)
− f ′′j (s)

f ′j(s)

∣∣∣ , min
i∈[1,...,n]
f ′i(s)=0
f ′′i (s)6=0

√
q̈max
i

|f ′′i (s)|


(43)

3.4.2 Joint Velocity Limits

Constraints on the joint velocities are given as

−q̇max
i ≤ q̇i ≤ qmax

i ∀i ∈ [1, ..., n] (44)
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Plugging Eq. 23 into Eq. 44 yields

−q̇max
i ≤ f ′i(s)ṡ ≤ qmax

i ∀i ∈ [1, ..., n] (45)

If f ′i(s) = 0, then Eq. 45 is always satisfied. Otherwise, because ṡ > 0, Eq. 45 is

equivalent to

ṡ ≤ qmax
i

|f ′i(s)|
∀i ∈ [1, ..., n] (46)

Thus, the constraint on the path velocity caused by limits on the joint velocities

is given by

ṡ ≤ ṡmax
vel (s) (47)

with

ṡmax
vel (s) = min

i∈[1,...,n]
f ′i(s)6=0

q̇max
i

|f ′i(s)|
(48)

We will make use of the slope of this limit curve in the phase plane, which is the

derivative by s given by

d

ds
ṡmax
vel (s) = − q̇max

i f ′′i (s)

f ′i(s) |f ′i(s)|
i = arg min

i∈[1,...,n]
f ′i(s) 6=0

q̇max
i

|f ′i(s)|
(49)

3.5 Algorithm

Figure 3 shows the s-ṡ phase-plane. The start point is in the bottom-left corner

and the end point in the bottom-right corner. The two limit curves limiting the

path velocity, which are caused by joint acceleration and joint velocity constraints

respectively, are shown. The trajectory must stay below these two limit curves. We

want to find a trajectory that maximizes path velocity ṡ at every point along the

path. While not on the limit curve, the path acceleration must be at one of its limits,

i.e. s̈min or s̈max. Thus, at every point on the phase-plane below the limit curve there
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Figure 3: Phase-plane trajectory

are two possible directions to move in: one applying minimum acceleration and the

other one applying maximum acceleration. The algorithm needs to find the switching

points between minimum and maximum acceleration. In Figure 3 switching points

are marked by arrows. Switching points from minimum to maximum acceleration

must be on the limit curve, because otherwise we could find a faster trajectory above

the solution trajectory [51].

The high-level algorithm is described below. It differs slightly from [51]. We inte-

grate backward from the end point as the very last step. This makes the algorithm

slightly simpler to implement, because while integrating forward we can never inter-

sect with another trajectory part and while integrating backward we can never reach

the limit curve. Section 3.7 gives some more implementation details. The numbers

in Figure 3 correspond to the steps of the algorithm.

1. Start from the start of the path, i. e. s = 0 and ṡ = 0.

2. Integrate forward with maximum acceleration s̈ = s̈max(s, ṡ) until one of the

following conditions is met.

• If s ≥ sf , continue from the end of the path, i. e. s = sf and ṡ = 0 and

go to step 5.

• If ṡ > ṡmax
acc (s), go to step 4.
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• If ṡ > ṡmax
vel (s), go to step 3.

3. Follow the limit curve ṡmax
vel (s) until one of the following conditions is met.

• If
s̈max(s,ṡmax

vel (s))

ṡ
< d

ds
ṡmax
vel (s), go back to step 2.

• If
s̈min(s,ṡmax

vel (s))

ṡ
> d

ds
ṡmax
vel (s), go to step 4.

4. Search along the combined limit curve for the next switching point. See Sec-

tion 3.6.

• Continue from the switching point and go to step 5.

5. Integrate backward with minimum acceleration until the start trajectory is hit.

(If the limit curve is hit instead, the algorithm failed. We used this condition

to detect failures shown in Table 3.) The point where the start trajectory is

intersected is a switching point. Replace the part of the start trajectory after

that switching point with the trajectory just generated.

• If we transitioned into this step from step 2, halt. The start trajectory

reached the end of the path with s = sf and ṡ = 0.

• Otherwise, continue from the end of the start trajectory, which is the

switching point found in step 4, and go to step 2.

3.6 Switching Points

With the exception of a finite number of points, at every point on the acceleration

limit curve there is only a single feasible acceleration. If this acceleration leads into

the feasible region, the point on the limit curve is called a trajectory source [47].

If this acceleration leads out of the feasible region, the point is called a trajectory

sink. We define trajectory source and sink similarly for the velocity limit curve if all

feasible accelerations lead into or out of the feasible region. If the interval of feasible

accelerations allows following the velocity limit curve, we call the point singular.
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A switching point along a limit curve is a point where the limit curve switches

from being a trajectory sink to being a trajectory source or to being singular. The

limit curve is the curve given by the minimum of the acceleration limit curve and the

velocity limit curve. A switching point of the acceleration or velocity limit curve is a

switching point of the limit curve if the limit curve the switching point is on is the

lower one. The following two sections deal with finding the switching points on both,

the acceleration and velocity limit curves.

3.6.1 Caused by Acceleration Constraints

This section describes how to find switching points along the path velocity limit curve

ṡmax
acc (s) caused by constraints on the joint accelerations.

We distinguish three cases of these switching points, depending on whether the

curve is continuous and/or differentiable at the switching point.

3.6.1.1 Discontinuous

ṡmax
acc (s) is discontinuous if and only if the path curvature f ′′(s) is discontinuous [53].

For a path generated as described in Section 3.3 the discontinuities are exactly the

points where the path switches between a circular segment and straigt line segment.

If the path’s curvature f ′′(s) is continuous everywhere, this case of switching points

does not happen.

At a discontinuity s there are two path velocity limits ṡmax
acc (s−) and ṡmax

acc (s+). The

switching point is always at the smaller one of the two. If the discontinuity is a positive

step and there is a trajectory sink in the negative direction of the discontinuity, then

the discontinuity is a switching point. Equally, if the discontinuity is a negative step

and there is a trajectory source in the positive direction of the discontinuity, then the

discontinuity is a switching point. Or more formally, a discontinuity of ṡmax
acc (s) is a
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Figure 4: Minimum and maximum acceleration trajectories near a switching point
where the limit curve is nondifferentiable

switching point if and only if

(
ṡmax
acc (s−) < ṡmax

acc (s+) ∧ s̈max(s−, smax
acc (s−)) ≥ d

ds
ṡmax
acc (s−)

)
∨
(
ṡmax
acc (s−) > ṡmax

acc (s+) ∧ s̈max(s+, smax
acc (s+)) ≤ d

ds
ṡmax
acc (s+)

)
(50)

3.6.1.2 Continuous and Nondifferentiable

The original paper [51] introducing the approach claims that every point along the

limit curve only has a single allowable acceleration with s̈min(s, ṡmax
acc (s)) = s̈max(s, ṡmax

acc (s)).

However, this is inaccurate. As [47] notes, there are points along the limit curve where

there is an interval of allowable accelerations, i. e. s̈min(s, ṡmax
acc (s)) < s̈max(s, ṡmax

acc (s)).

These points are called critical points in [50] and zero-inertia points in [53]. At these

points the limit curve is continuous but nondifferentiable [50]. As noted in [47], a

neccessary condition for such switching points is

∃i : f ′i(s) = 0 (51)

For a path generated from waypoints as described in Section 3.3, points satisfying

Eq. 51 can be easily calculated. There are at most n per circular segment.

[47] does not note that choosing the correct acceleration at such a switching point

might be an issue. [47] proposes to integrate backward from such a switching point
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with minimum acceleration and integrate forward with maximum acceleration as

usual. [50] notices that the acceleration at such a switching point needs special

consideration. [50] notes that the maximum or minimum acceleration cannot always

be followed, because they would lead into the infeasible region of the phase plane. [50]

calls such a point a singular point and proposes to follow the limit curve tangentially.

However, both [47] and [50] are in error.

Figure 4 shows a switching point at a point where the limit curve is nondiffer-

entiable. At the switching point two arrows indicate the direction of motion in the

phase plane when applying minimum or maximum acceleration, respectively. In the

feasible region of the phase plane gray curves visualize two vector fields. They show

minimum- and maximum-acceleration trajectories. Minimum-acceleration trajecto-

ries are dashed, maximum-acceleration trajectories are solid. In the case shown here,

if integrating backwards with minimum acceleration, the infeasible region would be

entered. Thus, according to [50] we would have to follow the red limit curve tan-

gentially backwards from the switching point. For integrating forward [47] and [50]

propose to follow the upward arrow. However, both of these motions are not possible,

as they would not move along the vector field sourrounding the switching point. Zero

is the only acceleration at the switching point that conforms with the vector field

around it, resulting in a trajecory moving horizontally in the phase plane.

We claim that the optimal acceleration is zero at every such switching point. We

leave the proof for future work, but all of our experimental data supports this claim.

In order for the zero acceleration to be feasible, the limit curve must switch from

a negative to a positive slope at the switching point. We claim that the limit curve

switching from a negative to a positve slope is a necessary and sufficient condition for

a switching point at a point of nondifferentiability of the limit curve. Together with

the sufficient condition stated in Eq. 51, this allows for an explicit enumeration of all

such switching points.
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q1

q2

q3

Figure 5: Joint acceleration space for n=3 with box constraints and a trajectory for
a switching point that meets the limit curve tangentially.

3.6.1.3 Continuous and Differentiable

According to the following lemma this case does not exist.

Lemma 1. If only joint accelerations are constrained, the path is piece-wise coplanar,

and the curvature f ′′(s) is discontinuous at the points where the pieces are stitched

together, then there are no switching points at which the limit curve is continuous and

differentiable.

Proof. Before the switching point the path acceleration is at the lower limit. This

implies that at least one joint is at its acceleration limit. After the switching point

the path acceleration is at its upper limit. This implies that at least one joint distinct

from the previous one is at its acceleration limit. At the switching point both joints

are at their acceleration limit. The limit curve, the phase-plane trajectory and the

joint-space trajectory are continuous and differentiable near the switching point. One

joint approaches its acceleration limit at the switching point and then stays at the

limit. Another distinct joint is at its acceleration limit and leaves the limit at the

switching point. Figure 5 shows the joint acceleration space for a 3-joint system

with the joint acceleration limits shown as a box. At the switching point two joint

are at their acceleration limit. Thus, the trajectory is on an edge of the box at the

switching point. Before the switching point the trajectory stays on one surface of the

box, approaches the edge tangentially. After the switching point the trajectory leaves
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the edge tangentially while staying on another surface of the constraint box. This

trajectory lives in at least a three-dimensional subspace of the joint acceleration space.

There is no two-dimensional subspace that includes the trajectory in the vicinity of

the switching point. Because the path is piecewise planar, the accelerations in joint

space are also piecewise planar. Because there is no trajectory in joint acceleration

space that cannot be included in a two-dimensional subspace, a switching point where

the limit curve is differentiable does not exist. The only case where such a switching

point can exist is where two planar parts of the path are stitched together. However,

these points are those where the curvature f ′′(s) is discontinuous and thus the limit

curve is discontinuous.

3.6.2 Caused by Velocity Constraints

This section describes how to find switching points along the path velocity limit curve

ṡmax
vel (s) caused by constraints on the joint velocities. We distinguish two cases of these

switching points, depending on whether s̈min(s, ṡmax
vel (s)) is continuous.

3.6.2.1 Continuous

s is a possible switching point if, only if

s̈min(s, ṡmax
vel (s)) =

d

ds
ṡmax
vel (s) (52)

We search for these switching points numerically by stepping along the limit curve

until we detect a sign change. Then we use bisection to more accurately determine

the switching point. See also Section 3.7.2.

3.6.2.2 Discontinuous

f ′′i (s) being discontinuos is a necessary condition for s̈min(s, ṡmax
vel (s)) being discontin-

uos. s is a possible switching point if and only if

(s̈min(s−, smax
vel (s−)) ≥ d

ds
ṡmax
acc (s−)) ∧ (s̈min(s+, smax

vel (s+)) ≤ d

ds
ṡmax
acc (s+)) (53)
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3.7 Numerical Considerations

When doing floating-point calculations we must accept approximate results. However,

we cannot accept the algorithm failing completely due to numerical inaccuracies.

We now describe how numerical inaccuracies can make the algorithm described in

Section 3.5 fail and the measures we have taken to avoid that. None of the previous

papers on this approach [51, 47, 53, 50, 57] have dealt with numerical issues.

3.7.1 Integration

The algorithm described in Section 3.5 assumes that we can exactly integrate the tra-

jectory. Under this assumption it is impossible to hit the limit curve at a trajectory

source when integrating forward. However, as we have to do the integration numer-

ically with some non-zero step size, it is not exact. This can lead to the limit curve

being hit at a trajectory source. Figure 6 shows an example of the trajectory hitting

the limit curve at a trajectory source. The figure shows the limit curve together

with an accurate trajectory generated using a small step size and a not-so-accurate

trajectory generated with a 10 times larger step size (1 ms).

The trajectories enter the figure on the left at minimum acceleration until they

touch the limit curve. Then they switch to maximum acceleration. In the following

the accurate trajectory gets close to the limit curve but does not hit it. The inaccurate

trajectory, however, because of the larger step size, misses the bend shortly before

the limit curve and hits the limit curve. According to the algorithm described in

Section 3.5 and the algorithms described in previous work [51, 47, 50, 57] we would

have to stop the forward integration, search for the next switching point along the

limit curve and integrate backward from there until we hit the forward trajectory.

However, when integrating backward from the next switching point we might hit the

limit curve instead of the forward trajectory. This is because the algorithm relies on

the fact that there are no trajectory sources between where the forward trajectory
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ṡ

s

limit curve
accurate trajectory

inaccurate trajectory

(a) failure without source/sink check

ṡ

s

limit curve
accurate trajectory

inaccurate trajectory

(b) success with source/sink check

Figure 6: Dealing with integration inaccuracies

hits the limit curve and the next switching point, which is not the case if the forward

trajectory hits the limit curve at a trajectory source. To deal with this issue, we

determine the intersection point with the limit curve by bisection and then check

whether this point is a trajectory source by comparing the slope of the limit curve

with the slope of the maximum-acceleration trajectory. Figure 6 shows the result of

this measure. The inaccurate trajectory does not follow the accurate one exactly, but

it does not stop when the limit curve is hit. Thus the algorithm succeeds.

Note that although the smaller step size solved the problem in the example shown

in Figure 6, it does not do so in general. In general, a smaller step size or a better

integration method only make it less likely that the limit curve is hit at a trajectory

source. Thus, the method described above is necessary to ensure completeness of the

algorithm.
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3.7.2 Switching Point Search

All previous work at least partially relies on numerical search to find switching points,

but none notes the potential issues caused by using it. We also use numerical search,

but only along the velocity limit curve. If we only had acceleration constraints,

numerical search would not be necessary. We try to avoid numerical search as much

as possible, because it is slower, less accurate and might make the algorithm fail.

Our algorithm relies on the fact that we can find the next switching point along

the limit curve. However, by searching numerically and stepping along the limit

curve, we could theoretically miss a switching point and find one that is not the next

one. The algorithm could potentially be adapted to work with any switching point

without requiring it being the next one. However, during our experiments we did not

encounter a failure caused by missing a switching point.

3.8 Experimental Results

We evaluated our approach by generating trajectories for a 7-DOF robot arm that is

given the task of picking and placing a bottle from or onto a shelf or table. The results

are averages over 100 pick-and-place operations. For each pick-and-place operation

we randomly selected a pick and a place location. Figure 7 shows the 200 pick and

Figure 7: 200 start and goal locations
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Table 1: Results for varying time steps

Failure rate

Time Computation Execution without with

Step Time Time source/sink check

10 ms 0.2 s 4.74 s 13 % 0 %

1 ms 0.9 s 4.71 s 3 % 0 %

0.1 ms 31.8 s 4.70 s 0 % 0 %

place locations. We used a bidirectional RRT to plan a configuration space path for

the arm. Each pick-and-place operation constists of 3 path segments: from the initial

arm configuration to the pick configuration, to the place configuration and back to

the intial configuration. In our evaluation we ignore the finger motion necessary to

grasp the object. The robot shown in Figure 7 uses only its left arm. The arm

configuration shown is the inital arm configuration, which is reached at the beginning

and end of every pick-and-place operation. The paths generated by the RRT planner

are shortened using random short cutting. The result are paths given by waypoints

at most 0.1 apart. Here we evaluate the trajectory generation from these waypoints.

This method of generating example paths is very real-world oriented and does not

allow us to handcraft waypoints until the trajectory generation accidentally succeeds.

Table 3 shows computation and execution times for different time steps used for

the integration of the trajectory. The computation time was achieved on a single core

of an Intel Core i5 at 2.67 Ghz. Smaller time steps lead to a longer computation

time and a slightly closer to optimal path. What is not shown here is that a smaller

step size also leads to the constraints being satisfied more accurately. Related to

that is the fact that a larger time step makes the algorithm more likely to fail if the

counter measures for numerical inaccuracies described in Section 3.7.1 are omitted.

Our algorithm is robust enough to successfully generate trajectories for 100 random

pick-and-place operations using different time steps.
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We also ran our algorithm on a real-robot arm following a path defined by hand-

crafted waypoints. A video of this and a few example pick-and-place operations is

available at http://www.golems.org/node/1570.

3.9 Conclusion

We presented an algorithm to follow a path in time-optimal manner while satisfying

joint acceleration and velocity constraints. We added blends to a list of waypoint in

order to be able to use the output of standart path planners. Our improvements to

existing work make the algorithm more robust and less likely to fail. We showed the

robustness of our implementation by following paths planned by an RRT planner for

100 random pick-and-place operations.
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CHAPTER IV

INCOMPLETENESS OF STANDARD KINODYNAMIC

RRTS

4.1 Overview

Rapidly-Exploring Random Trees (RRTs) as introduced by LaValle and Kuffner

[38, 39, 40, 30, 41] are a popular method for geometric and kinodynamic planning.

Many, e.g. [11, 9, 16], consider RRTs to be a synonym for probabilistic completeness.

However, this is not necessarily the case. Kinodynamic RRTs [38, 39, 40, 41] (see

Section 2.2.1.2) only have the property of probabilistic completeness under a set of

assumptions, which depend on implementation details that are left open by the RRT

algorithm. These details govern how the time step and the input are chosen to extend

the tree from the selected node. While it has been shown that the RRT algorithm

for kinodynamic planning is probabilistically complete with a fixed time step and a

random control input [40, 41], we now describe that a more commonly used variant

is not probabilistically complete in the general case. This variant uses a fixed time

step and chooses the best control input for the extension of the tree from the selected

node. This variant is for example used in [6, 15, 46, 3, 22, 9].

Even though we prove this variant to not be probabilistically complete in general,

it could potentially be made probabilistically complete by introducing additional re-

quirements on the system dynamics and/or the used distance metric. In fact, one

of the goals of this chapter is to spur further research on the exact conditions under

which RRTs are probabilistically complete.
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4.1.1 Problem Formulation

In this analysis, consider a system with differential constraints given as

ẋ = f(x,u) (54)

with state x ∈ X and input u ∈ U .

The set of all collision-free states is given as Xfree ⊆ X . An initial state xinit ∈ Xfree

and a goal set Xgoal ⊆ Xfree are given. We want to find a duration T and an input

trajectory u(t) such that the differential constraints of Eq. 54 are satisfied for all

0 ≤ t ≤ T , the trajectory is collision free with x(t) ∈ Xfree for all 0 < t < T ,

x(0) = xinit and x(T ) ∈ Xgoal.

4.1.2 Probabilistic Completeness of Kinodynamic RRTs

An algorithm is probabilistically complete if the probability that an existing solution

is found converges to 1 as the number of iterations grows to infinity [42].

It has been shown in [40, 41] that if U is finite, ∆t is fixed and u is chosen

at random, the RRT algorithm is probabilistically complete. However, choosing u

randomly may not result in the RRT exploring the state space rapidly.

In contrast, the preliminary RRT variant introduced in [38, 39] also uses a fixed

time step ∆t but chooses the best input u. The very first paper on RRTs [38] but none

of the later papers [39, 40, 41] claimed this variant to be ”probabilistically complete

Table 2: Probabilistic completeness of different kinodynamic RRT variants

Fixed ∆t Variable ∆t

Random u
Probabilistically complete

(if U finite) [40, 41]
?

Best u
Not probabilistically complete

[this thesis]
?
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under very general conditions”. We show that this variant is not probabilistically

complete.

Restricting the RRT to a fixed time step renders the algorithm unable to find

solutions that do not consist of ∆t long segments of constant input. However, even if

a solution with ∆t long segments of constant input exists, the RRT with best-input

extension might never find it.

This section up until here is summarized in Table 4.

As mentioned in Section 2.2.1.2, the best input out of a continuous input set is

often approximated in practice by sampling a finite set of inputs and choosing the

best input out of the finite set. This approximation may render the RRT algorithm

probabilistically complete because of the added randomness. However, an algorithm

that is probabilistically complete only thanks to approximation errors is likely to not

be very efficient.

4.1.3 RRTs Using Steering Methods

A steering method is able to exactly connect any two states x1, x2 ∈ X with ‖x1 −

x2‖ < ε for some ε > 0 while ignoring obstacles. Computationally efficient steering

methods are not available for general dynamical systems. They are only available for

a few simple systems, e.g. Dubin’s car [42, 8] and a set of double integrators [36]. A

steering method in combination with a collision checker yields what is called a local

planner in the probabilistic roadmap literature [26].

To be generally applicable, kinodynamic RRTs as introduced in [38, 39, 40, 41] do

not require a steering method. Instead, they only rely on an incremental simulator

that can simulate the system forward for a given input and time step. However,

there are RRT algorithms that make use of a steering method. These are not the

topic of this chapter. However, we want to briefly mention them in this section to

make the differences clear and to emphasize that the negative result on probabilistic
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completeness presented in this chapter does not apply to those.

A steering method usually returns a trajectory that minimizes some cost, e. g.

time. When using a steering method, the distance function used by the RRT is also

based on this steering method by defining the distance as the optimal cost to move

between two states ignoring obstacles. Karaman and Frazzoli [23] proved that an

RRT* using an optimal steering method in combination with a distance function

based on that steering method is probabilistically complete. Since an RRT* uses the

same vertices as an RRT, the RRT algorithm is also probabilistically complete under

these assumptions.

Geometric RRT planners [30] (see Section 2.2.1.1) that use a Euclidean distance

function and connect configurations with a straight line in configuration space can

also be viewed as using a steering method and fit into the framework assumed in

[23]. The straight line is the trajectory that minimizes path length and the distance

function returns that path length.

Whereas RRT planners using steering methods have been most successful in prac-

tice and come with guarantees on probabilistic completeness, not requiring a steering

method was one of the selling points when the RRT was initially introduced.

4.2 Proof

We demonstrate that a kinodynamic RRT with fixed time steps and best-input ex-

tension is not generally probabilistically complete. The proof uses a counter example.

The RRT variant we are considering here selects both the node and the input by

evaluating closeness to the sampled state according to the provided distance metric ρ.

In order for a node to get selected it must be the closest one to the sample. The same

goes for the input: In order to be selected, the successor state resulting from the input

must be the closest one to the sample among all the successor states resulting from

applying inputs from the current node. Even though for every node and for every

48



input there exist states such that the considered node or the considered successor state

is closest, in order for a specific input to be selected for extension from a specific node,

more is required: (1) The specific node must be the closest to the sample and (2)

among all the successor states resulting from applying inputs from the specific node,

the state resulting from the specific input must be the closest. We provide an example

case in which there is no state that could be sampled that satisfies both requirements.

The system used as counter example is described in Section 4.2.1. In Section 4.2.2

we present a possible intermediate tree and in Section 4.2.4 we demonstrate that

the considered RRT variant cannot explore the full reachable state space from that

intermediate tree because there exists a node and an input such that no sampled state

results in selecting both of them. Section 4.2.3 provides some background of Voronoi

regions, which are used in the proof in Section 4.2.4.

4.2.1 Counter Example

Consider the following system with a 2-dimensional state vector [x1, x2], a scalar input

u and no obstacles.

ẋ1 = u (55)

ẋ2 = u2 − 3 (56)

with |u| ≤ 1 (57)

Note that −4 ≤ ẋ2 ≤ −2 and thus the system is always moving in negative

direction along the x2 axis. The set of possible successor states after a time step of

∆t from the current state is a segment of a parabola. Figure 8 shows the set of states

reachable within 3∆t from some initial state xinit assuming constant input during a

fixed time step ∆t.

Observe that the fact that the system is restricted to always move in the negative

direction of the x2 axis makes it impossible to revisit an earlier state. Also, all states

at t = ∆t and t = 2∆t are only reachable at one specific point in time.
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xinit

t = 0

t = ∆t

t = 2∆t

t = 3∆t

x1

x2

Figure 8: States reachable from xinit

Our counter example uses a Euclidean distance for the RRT algorithm.

4.2.2 Intermediate Tree

A probabilistically complete algorithm must be able to explore the whole reachable

space from any intermediate tree that the algorithm might produce. Figure 9 shows

what the RRT could look like after two extensions from the initial state. The new

nodes xa and xb sit at the ends of the parabola segment that represents the reachable

space at time ∆t.

If the algorithm was probabilistically complete, it would still be able to explore the

whole reachable space. However, we show that given this tree configuration, the RRT

is never going to explore the state space areas shown in gray, even though they are

reachable by the system. The parabola segment at t = ∆t is never explored except

its endpoints. The unexplored space at t = 2∆t and t = 3∆t is just the result of the

unexplored parabola segment at t = ∆t, since getting there requires moving through
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xinit

xa xb

t = 0

t = ∆t

t = 2∆t

t = 3∆t

x1

x2

Figure 9: RRT after two extensions. Gray areas of the state space are never explored.

a state in the interior of the parabola segment. Also, note that the unexplored space

at t = 2∆t and t = 3∆t does not play a role for our proof, since the inability of

the RRT to explore the interior of the parabola segment is enough for it to not be

probabilistically complete. Part of the unexplored space at t = 3∆t could potentially

still be explored at t = 4∆t, since it overlaps with the reachable space at t = 4∆t,

which is not shown in the figure.

4.2.3 Background: Voronoi Regions of Sites

Even though Voronoi regions are a well-known concept, we are going to review them

in this section since our proof in the next section uses the less common concept of

a Voronoi region of an infinite set of points instead of only Voronoi regions of single

points.

Consider k subsets Si ⊂ X with i = 1 . . . k such that ∀i 6= j : Si∩Sj = ∅. The sets

Si are called sites. The Voronoi region of site Si is the set of all points that is closer
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to Si according to our distance metric ρ than to any other site. Or more formally

Vor(Si) = {x ∈ X | ∃p ∈ Si ∀j = 1 . . . k ∀q ∈ Sj : ρ(x, p) ≤ ρ(x, q)} (58)

Note that in the common case all sites Si only contain a single point, but we are

also going to make use of a site Si containing infinitely many points. Also note that

Vor(Si) does not only depend on Si but on all Sj with j = 1 . . . k. A Voronoi diagram

is a tuple (Vor(Si))i∈{1...k} of all the k Voronoi regions.

4.2.4 Non-Exploration of Parabola Segment

We now look closer at t = ∆t to determine why the interior of the parabola segment

is not explored by the RRT algorithm. As mentioned in Section 4.2.1, because the

example system is constrained to always move in negative x2 direction, the states

on the parabola segment can only be reached at time t = ∆t. Thus, the parabola

segment can only be explored by extending the tree from the root node.

To extend the tree to the parabola segment, the random sample of the RRT

algorithm must fall in the Voronoi region of the root node. The Voronoi regions of

the three tree nodes (which are the Voronoi sites here) are shown in Figure 10. The

root node’s Voronoi region is shaded with lines.

Now assume the RRT samples somewhere in the root node’s Voronoi region and

thus selects the root node as the nearest neighbor for extension. The next step is

to choose the input to use to extend the tree from the root node. The RRT variant

we are considering chooses the input such that the distance of the new child node to

the sampled state is minimized. Similar to the way the closest node to the sample

gets picked by the RRT algorithm, now the closest successor state of the selected

node gets picked. We will now look at Voronoi regions of different successor states

of the root node. We consider three sites and their Voronoi regions. Two sites are

defined to be the two end points of the parabola segment and the third site is the

entire rest, the interior, of the parabola segment. Note that the latter Voronoi site
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xinit

xa xb

Vor({xa}) Vor({xb})

Vor({xinit})

Figure 10: Voronoi diagram of the three tree nodes, i. e. of the three Voronoi sites
S1 = {xinit}, S2 = {xa} and S3 = {xb}. The root node’s Voronoi region is shaded
with lines.

xa xb

I

Vor({xa}) Vor({xb})

Vor(I)

Figure 11: Voronoi diagram of the successor states of the root node. Three Voronoi
sites are considered: the two endpoints of the parabola segment, S1 = {xa} and
S2 = {xb}, and its interior S3 = I. The Voronoi region of the interior I of the
parabola segment is shaded with dots.

xinit

xa xb

Figure 12: Combining the two Voronoi diagrams from Figures 10 and 11: Voronoi
regions of the root node (lines) and the interior of the parabola segment (dots). They
do not overlap.
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xinit

xa xb

Figure 13: Points within the root node’s Voronoi region are closer to either one of
the endpoints of the parabola segment than to its interior.

consists of infinitely many states. The three Voronoi regions of those sites are shown

in Figure 11. The Voronoi region of the interior of the parabola segment is shaded

with dots.

For the RRT to explore the interior of the parabola segment, the sampled state

must lie in both, the Voronoi region of the root node and the Voronoi region of the

interior of the parabola segment. However, as Figure 12 shows, the two Voronoi

regions don’t overlap. Thus, the RRT cannot explore the interior of the parabola

segment and the algorithm is not probabilistically complete.

Figure 13 provides a slightly different illustration of the same fact that every

sample in the root node’s Voronoi region is closer to one of the endpoints of the

parabola segment than to its interior. The figure shows three exemplary points within

the root node’s Voronoi region. The dashed circles around them show that the closest

point on the parabola segment is always one of the endpoints.

4.2.5 Discrete Inputs

Above proof can easily be extended to the discrete case. For example we can replace

the entire interior of the parabola by a single input that leads to a state in the center

of the parabola segment. This means Eq. 57 is replaced by u ∈ {−1, 0, 1}. The

voronoi regions for this discrete counter example are shown in Figure 14. Similarly
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xinit

xa xb

Figure 14: Discrete case: Voronoi regions of the root node (lines) and the zero-input
state (dots)

to the continuous case, the zero-input state shown in gray will never be explored.

However, in the discrete-input case the RRT algorithm can be easily adapted to

be probabilistically complete by making sure that no input is applied to the same

node twice [42]. This forces the RRT to eventually try to expand all inputs of a node.

This adaption is not possible in the continuous-input case.

4.3 Conclusion

We showed that a common variant of kinodynamic RRTs is not probabilistically com-

plete. This contradicts general perception that RRTs are inherently probabilistically

complete. Instead, probabilistic completeness depends on the implementation details

of the RRT, the specific problem and/or the chosen distance metric. Whether the

RRT variant considered here can be made probabilistically complete by introducing

constraints on the problem or distance metric is left open for further research. The

question whether kinodynamic RRTs with a variable time step are probabilistically

complete is also left open.

Even though RRTs were initially designed for not requiring a steering method, the

finding in this chapter provides an argument for using RRTs with a steering method

as we do in Chapter 6.
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CHAPTER V

STEERING METHOD: DOUBLE-INTEGRATOR

MINIMUM TIME (DIMT)

5.1 Overview

This chapter presents the steering method that we use to connect states within the

RRT and that provides a distance function for selecting the nearest neighbor. The

steering method is able to exactly connect two given states, which consist of positions

and velocities of all joints. The steering method returns the time-optimal trajectory

satisfying the given velocity and acceleration limits. The only constraints the steering

method ignores are obstacles in the workspace and position limits. These are handled

by the RRT algorithm.

The algorithm for finding the time-optimal trajectory consists of two steps. First,

we calculate the minimum time T at which all DOFs can reach their goal state

simultaneously. Second, we calculate trajectories for each individual DOF to reach

their goal state at that time T .

Note that the overall minimum time is different from the minimum times of the

individual DOFs. Furthermore, unlike claimed in [18] and [23], the overall minimum

time is not the maximum of all the individual minimum times. In addition to having

a minimum time to reach its goal state, each individual DOF also has up to one

infeasible time interval, which is greater than the minimum time, but during which

the DOF cannot reach its goal state [29]. Section 5.3 describes how to calculate the

minimum time for an individual DOF and Section 5.4 how to calculate the infeasible

interval. After these have been determined for every DOF, we find the overall min-

imum time as the smallest time that is at least as great as the greatest individual
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Figure 15: Determining the overall minimum time t from the individual DOF’s min-
imum times and infeasible time intervals

minimum time and is not within any infeasible time interval (see Figure 15).

After the overall minimum time T has been determined, Section 5.5 describes how

to calculate a trajectory for each individual DOF to reach its goal state at time T .

All the following sections only consider one individual DOF.

5.2 Solving Quadratic Equations

This section describes how to solve a quadratic equation explicitly for either the

greater or the lesser one of the two solutions without having to calculate and compare

both solutions to figure out whether they satisfy given constraints as it is done in [18].

The solution to the quadratic equation

ax2 + bx+ c = 0 (59)

is given by

q = −1

2

(
b+ sgn(b)

√
b2 − 4ac

)
(60)

x1 =
q

a
x2 =

c

q
(61)

The solutions satisfy |x1| ≥ |x2|. If sgn(a) = sgn(b), then x1 ≤ x2. Otherwise,

x1 ≥ x2.

For calculating the minimum time of an indivisual DOF (Section 5.3), we need

the greater solution of a quadratic equation. For calculating the infeasible interval of

a DOF (Section 5.4) both the lesser and greater solutions to a quadratic equation are
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Figure 16: Regions of the phase plane the
goal state can be in relative to the start
state. The shown separating trajectories
are at an acceleration limit. Without loss
of generality this figure assumes a positive
start velocity.
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Figure 17: Extremal-acceleration tra-
jectories defining the minimum time
(solid) and the lower (dashed) and up-
per (dotted) bounds of the infeasible
interval.

used. For calculating the fixed-time trajectories for the individual joints (Section 5.5),

we make use of the solution with the greater absolute value.

5.3 1-DOF Minimum Time

The minimum-time trajectory for a single DOF consists of either 2 or 3 segments.

The first and the last one have a constant acceleration of a1 and a2 respectively,

whereas the acceleration must be at one of the acceleration limits. The optional

middle segment has a constant velocity at one of the velocity limits. We need to

determine the sign of a1 and a2 and whether the minimum-time trajectory includes

a constant-velocity segment. Unlike [18] we do not solve the problem for all 4 possi-

bilities. Instead we first determine the signs of the accelerations a1 and a2 and of the

velocity limit that we might potentially hit.

We can visualize the dependence of the sign of the accelerations and velocity limit

on the start and goal states in the phase plane. Figure 16 shows minimum- and

maximum-acceleration trajectories emanating from a given start state. If the goal

state is in regions I/II/III, a1 has the same sign as the start velocity. In regions IV/V

it has the opposite sign.

58



To determine the sign programmatically, we compare the distance traveled ∆pacc

while accelerating as fast as possible from the start velocity v1 to the goal velocity v2

with the actual distance between the start position p1 and goal position p2.

∆pacc =
1

2
(v1 + v2)

|v2 − v1|
amax

(62)

σ = sgn(p2 − p1 −∆pacc) (63)

a1 = −a2 = σamax (64)

vlimit = σvmax (65)

We first find a solution without a constant-velocity segment. We solve the following

quadratic equation for the duration of the first segment ta1.

a1t
2
a1 + 2v1ta1 +

v22 − v21
2a2

− (p2 − p1) = 0 (66)

This quadratic equation has two solutions, but only one of them is valid. ta1 must be

positive. So does the duration of the second segment ta2 given as

ta2 =
v2 − v1
a2

+ ta1 (67)

The requirement for ta2 to be positive can be transformed into a lower bound on ta1.

Thus, we have two lower bounds on ta1 and the valid solution of Eq. 66 is always the

greater one of the two (see Section 5.2). The total time is T = ta1 + ta2.

Whereas Eq. 66 is the same as in [18], the constraints on ta1 to find the valid one

of the two solutions are given incorrectly in [18].

We check whether the solution satisfies the velocity limits by checking the ex-

treme velocity at time ta1. If the solution is valid, then it is the minimum-time one.

Otherwise, the minimum-time solution has a constant-velocity segment and is given
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by

ta1 =
vlimit − v1

a1
(68)

tv =
v21 + v22 − 2v2limit

2vlimita1
+
p2 − p1
vlimit

(69)

ta2 =
v2 − vlimit

a2
(70)

5.4 Infeasible Time Interval

A DOF has an infeasible time interval if and only if the goal state is in region I of

Figure 16. Figure 17 visualizes the reason for the existense of the infeasible interval.

It shows the trajectories that define the minimum time as well as the bounds of the

infeasible interval. Reaching the goal state can be continuously delayed by choosing

a lower-velocity trajectory anywhere between the solid and the dashed trajectory.

However, this is only possible to an extent (until the dashed trajectory is reached)

while still reaching the goal state directly. To further delay reaching the goal state, the

DOF has to come to a complete stop and move backwards before accelerating towards

the goal state. This requires additional time and thus gives rise to the infeasible time

interval.

There is no such infeasible time interval for regions III - V, since the time-optimal

trajectory to those regions has to cross through zero velocity. Thus the arrival time

could be arbitrarily delayed by waiting at zero velocity. (Note, however, that this is

not what we actually do.) There is no infeasible time interval for region II because

the trajectory could be continuously slowed down to reach zero velocity. To calculate

the infeasible time interval for region I, we switch the signs of a1, a2 and vlimit.

a1 = −a2 = −σamax (71)

vlimit = −σvmax (72)

We solve Eq. 66 with a1 and a2 as defined in Eq. 71. The lower bound of

the infeasible interval is given by the lesser solution to the quadratic equation and
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Figure 18: Comparison of fixed-time trajectories as calculated by this thesis and
Hauser et al. [18] (solid) with previous work by Kröger [29] (dashed).

the upper bound is given by the greater solution (see Section 5.2). The trajectory

representing the upper bound of the infeasible interval might violate velocity limits.

If that is the case, the trajectory satisfying velocity limits is given by Eq. 68 - 70

with a1, a2 and vlimit as defined in Eq. 71 and 72.

5.5 Fixed-Time Trajectory

There is an infinite number of possible trajectories to reach a given goal state at a given

feasible time. Previous work makes different choices about which trajectory to pick.

Kröger [29] chooses the trajectory to only consist of segments with either extremal

or zero acceleration. However, this leads to unnecessarily high accelerations in some

cases. Hauser et al. [18] in contrast choose the trajectory such that it minimizes the

maximum absolute value of acceleration. However, unlike in [29] this might result in

a trajectory that does not satisfy the joint limits even though it would be possible

to satisfy them. We choose to follow Hauser et al. [18] and minimize the maximum

absolute value of acceleration. Figure 18 compares the fixed-time trajectories as

calculated by us and Hauser et al. with the one calculated by Kröger. The rest of

this section presents the algorithm for finding the minimum-acceleration trajectory,

which almost exactly follows Hauser et al. [18]. The only small difference is that we

are not evaluating both solutions to Eq. 73.

We find the minimum-acceleration trajectory by solving the following quadratic
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equation for a1

T 2a21 + (2T (v1+v2)− 4(p2−p1)) a1 − (v2−v1)2 = 0 (73)

The solution with the greater absolute value gives the acceleration a1 with a2 = −a1.

The durations of the two trajectory segments are given by

ta1 =
1

2

(
v2 − v1
a1

+ T

)
ta2 = T − ta1 (74)

If the trajectory violates velocity limits, we calculate the alternative solution with a

constant-velocity segment at a velocity limit. The limit velocity is given by

vlimit = sgn(a1) vmax (75)

with a1 as given by Eq. 73. The new accelerations satisfying the velocity limits are

then given by

a1 = −a2 =
(vlimit − v1)2 + (vlimit − v2)2

2(vlimitT − (p2 − p1))
(76)

The durations are given by Eq. 68 - 70 while using vlimit, a1 and a2 as defined in Eq.

75 and 76.
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CHAPTER VI

PROBABILISTICALLY COMPLETE PLANNING

6.1 Overview

By ignoring velocities completely, geometric planning makes the assumption that the

direction of motion can be changed instantaneously, which is impractical in reality

at high speeds. To take the robot’s actual capabilities of changing its velocity into

account, we need to include the joint velocities in the state space and add differen-

tial constraints. RRTs were initially introduced to deal with arbitrary differential

constraints. Since efficient steering methods do not exist for arbitrary differential

constraints, the standard kinodynamic RRT [38, 39, 40, 41] does not make use of a

steering method and instead uses a distance function, usually Euclidean, and an in-

cremental simulator to direct the growth of the tree. The Euclidean distance function

is uninformed and does not incorporate any knowledge about the system dynamics.

This leads to the RRT not being able to explore the state space efficiently. In addi-

tion, as described in Chapter 4, the most common variant of the kinodynamic RRT

is not probabilistically complete in general.

We propose acceleration-limited planning as a middle ground between pure geo-

metric planning and planning with full dynamics. Acceleration-limited planning is

more powerful than pure geometric planning and at the same time can be solved

with greater computational efficiency than full dynamic planning because a steering

method is available. To our knowledge we present the first computationally efficient

and probabilistically complete sampling-based planner for manipulators that deal

with non-zero start or goal velocities while considering actuator limitations. We use

a fast, non-iterative steering method that can efficiently solve the boundary value
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(a) DIMT-RRT (b) Geometric RRT

Figure 19: The acceleration-limited planner (a) is able to hit the nail at the correct
velocity while the geometric planner (b) is not.

problem.

While being more computationally efficient, acceleration-limited planning is less

powerful than considering the full dynamics. But it can solve problems geometric

planning cannot. Unlike a geometric planner our planner is able to find a trajectory

that satisfies acceleration limits for problems that include non-zero start and/or goal

velocities. We evaluate our planner on the task of hitting a nail with a hammer, which

requires a non-zero goal velocity. Figure 19 shows the final parts of the trajectories

planned by our acceleration-limited planner (a) and a geometric planner (b). Our

planner is able to plan a collision-free trajectory such that the hammer tip reaches

the nail with a velocity parallel to the nail. Moreover, our planner finds a feasible

solution to this problem in less than 100 ms. In contrast, the geometric planner

ignores the goal velocity completely and plans an approach from the side of the nail,

which is not going to drive the nail into the wall.

Another application that requires a non-zero start velocity is online replanning

as the robot is already in motion at the start of the new replanned trajectory. This

application is not examined in this thesis and is left for future work.

Our planner, described in Section 6.2, combines the RRT algorithm with the

steering method presented in Chapter 5. We compare our planner against a geometric

64



and kinodynamic RRT in Section 6.3.

6.2 DIMT-RRT

Our planner combines the existing bidirectional RRT-Connect planner [30] with the

steering method presented in Chapter 5. Our DIMT-RRT planner is shown in Algo-

rithm 4.

We sample the state space consisting of joint positions and velocities (line 5).

While sampling, we reject samples that cannot be part of a feasible solution, since it

is unavoidable to hit a position limit before or after reaching them. This is the case

for example if a DOF is moving with a high velocity towards a nearby position limit.

This step is more important than it might seem. In our planning scenario 92% of

samples get rejected.

We try to grow both trees towards the sample (lines 6 and 7). Different variations

of the RRT-Connect algorithm exist. The two trees can either only make one step

toward the sample (extend) or try to grow all the way to the sample (connect). We

are using the latter method for both trees.

Algorithm 5 makes a connection attempt from a tree to the sample. Unlike in [30]

our trajectories are not reversible. Thus, the parameter d keeps track of the direction

of the tree growth. We are either growing the start tree forward in time or the goal

tree backward in time.

We calculate the closest node in the tree using the steering method presented in

Chapter 5 (line 1). We use linear search to find the closest node. We cannot use

data structures for efficient nearest-neighbor search in metric spaces since the DIMT

distance function is not symmetric and thus not a metric. Only Sections 5.3 and 5.4,

but not Section 5.5 are used for the distance calculation.

Once the closest node is found, we calculate the trajectory σ as described in

Section 5.5 (line 2) and check it for collisions (line 3). If it is collision-free, we add the
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Algorithm 4: DIMT-RRT(xinit, Xgoal,∆t)

1 V1 ← {xinit}; E1 ← ∅;
2 V2 ← Xgoal; E2 ← ∅;
3 d = true;
4 while true do
5 xrand ← SampleReachableState();
6 if Connect(V1, E1, xrand, d,∆t) then
7 if Connect(V2, E2, xrand,¬d,∆t) then
8 return ExtractTrajectory(V1, E1, V2, E2, d);

9 Swap((V1, E1), (V2, E2));
10 d = ¬d;

Algorithm 5: Connect(V,E, xrand, d,∆t)

1 xnear ← NearestNeighbor(V, xrand, d);
2 (T, σ)← Steer(xnear, xrand, d);
3 if CollisionFree(T, σ) then
4 Xint ← IntermediateStates(T, σ,∆t);
5 V ← V ∪ Xint ∪ {xrand};
6 E ← E ∪ {xnear} ×Xint ∪ {(xnear, xrand)};
7 return true;

8 else
9 return false;

sample to the tree. The actual trajectory does not need to be stored. It can easily

be reproduced, since the steering method is fast and deterministic. For improved

performance, we not only add a node for the sample to the tree but also evenly

spaced intermediate nodes along the trajectory (line 4).

6.3 Experiments

To evaluate our planner we apply it to the problem of hitting a nail with a hammer

that is attached to a 7-DOF manipulator. We choose joint velocity and acceleration

limits of vmax = π/2 rad/s and amax = π/4 rad/s2. The hammer tip must not only

reach the nail, it must also do so at a velocity parallel to the nail. We arbitrarily

define this velocity to be 0.6 m/s. We automatically generate a set of joint states

that satisfy these requirements. The details of this process are beyond the scope of
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Figure 20: The DIMT-RRT planner hits the nail at the desired velocity

Figure 21: The geometric RRT planner reaches the nail but not at the desired velocity
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this thesis. Here we consider the goal states to be given in joint space. We focus on

the problem of planning the trajectory until impact and ignore the problem of what

to do when in contact with the nail.

To make the task harder we place an obstacle in the workspace of the robot.

The obstacle is placed such that the robot can touch the nail with the hammer

while reaching underneath the obstacle (Figure 21). However, the obstacle makes

it impossible to hit the nail at the required velocity while reaching underneath it.

Instead, the planner must find a trajectory that reaches over the obstacle (Figure 20).

We check trajectories for collision discretely every 0.1 seconds.

6.3.1 Performance of the Bidirectional DIMT-RRT

The DIMT-RRT planner finds a trajectory that hits the nail in the desired direction

and at the desired velocity. We smooth the trajectory using shortcutting as described

in [18]. The shortened trajectory is shown in Figure 20 and Figure 19(a). The DIMT-

RRT planner is not only able to find a trajectory that satisfies the task requirements,

it also does so very quickly. Table 3 shows the computation time of the DIMT-RRT

Table 3: Results of the DIMT-RRT planner for the problem of hitting the nail.
Averages over 100 runs on a single core of an Intel Xeon E5-1620 CPU at 3.6 GHz
with standard deviations.

after 100 after 200
RRT only shortcuts shortcuts

# samples 39.5 - -

± 41.3

# nodes 567.1 - -

± 407.0

Computation 56 ms 113 ms 157 ms

time ± 54 ms ± 63 ms ± 65 ms

Trajectory 12.4 s 6.4 s 6.1 s

length ± 4.0 s ± 1.1 s ± 1.1 s
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planner and the length of the generated trajectory with and without smoothing using

shortcuts. In average the planner finds a feasible trajectory in only 56 ms. The

table also shows that this is caused by a low number of samples (only 40 in average)

required by the RRT. This shows that our steering method allows the RRT to solve

the problem very efficiently without exploring much of the state space.

6.3.2 Comparison to Geometric RRT

The geometric planner uses the same set of goal states as the DIMT-RRT planner

but ignores the velocity part. The geometric planner is able to reach the nail but

does so from the side of the nail, which makes it impossible to drive the nail into

the wall. The generated path is shown in Figures 21 and 19(b). Since the geometric

planner generated a path that reaches under the obstacle, the path cannot even be

locally adapted to hit the nail at the desired speed.

6.3.3 Comparison to Standard Kinodynamic RRT

We compare the performance of our DIMT-RRT algorithm to a standard kinodynamic

RRT [41] with a Euclidean distance metric. We use single tree variants of both

algorithms that extend the tree by a fixed time step of 0.1 s. We alternate between

sampling randomly and among the goal states. We consider two strategies for growing

Table 4: Comparison of a single-tree variant of the DIMT-RRT and the standard
kinodynamic RRT with a Euclidean distance metric.

DIMT-RRT [this work] Kinodynamic RRT [41]
extend connect extend connect

# samples 9,019 14.6 > 1,000,000

± 8,415 ± 10.8

# nodes 9,633 434.1 > 900,000 > 2,500,000

± 8,096 ± 188.4

Computation 19.8 s 37 ms > 8 hours > 23 hours

time ± 37.1 s ± 22 ms
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the tree. The extend strategy, which corresponds to the original kinodynamic RRT

[41], makes exactly one step from the nearest node to the sample. The connect

strategy repeatedly extends the tree towards the same sample until no more progress

is made according to the used distance function.

There are only a few key differences between the two algorithms compared here.

For the DIMT-RRT if the sample is less than a time step away, we connect the tree to

the sample exactly. The algorithm terminates once the tree exactly connects to a goal

state. For the standard kinodynamic RRT the tree is always grown by exactly one

time step potentially overshooting the sample. Thus, for termination the algorithm

only requires the Euclidean distance between a new node and the goal state the tree

was growing toward to be less than 0.5. The DIMT-RRT rejects samples that cannot

be reached without violating position limits, the standard kinodynamic RRT does

not.

The standard kinodynamic RRT is not able to solve the problem at hand in a

reasonable amount of time. We aborted the algorithm after 1,000,000 samples. The

algorithm ran for more than 8 hours. Since we use linear search for determining

the nearest neighbor, the algorithm could potentially be sped up. But this is not

going to reduce the number of samples or get the computation time in the range of

seconds. In contrast, as Table 4 shows, the variation of the DIMT-RRT is able to

solve the problem efficiently. The connect strategy is significantly faster than the

extend strategy.

6.4 Conclusion

We proposed the problem domain of acceleration-limited planning for manipulators.

The presented probabilistically complete planner for this problem domain is highly

efficient thanks to the use of a non-iterative steering method, which can solve the

boundary value problem. We showed that this planner can solve problems a geometric
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planner cannot. Thus, for the presented problem our planner has advantages over

both geometric and dynamic planners.

71



CHAPTER VII

ASYMPTOTICALLY OPTIMAL PLANNING

7.1 Overview

While the method in the previous chapter is able to quickly find a feasible solution and

tries to improve that solution by shortcutting, it does not yield an optimal solution.

To achieve an optimal solution, in this chapter we combine the steering method with

an asymptotically optimal sampling-based planner. We use an RRT* planner, but

any other asymptotically optimal sampling-based planner could have been used in

the same way, e.g. PRM*, RRG*, RRT#[2], FMT*[20] or BIT*[13]. Unlike general

kinodynamic planning, acceleration-limited planning is well-suited for being solved by

an asymptotically optimal sampling-based algorithm, since the steering method allows

for exactly and efficiently connecting two states, which is crucial for the rewiring step

of those algorithms.

In order to achieve a near-optimal solution, all these planners need to densely

fill the state space with samples. However, in high-dimensional spaces this is very

inefficient. In order to improve the efficiency and not fill the whole state space with

samples, additional information can be used to fill only those parts of the state space

that can improve the current solution. Following [12], we call this the informed subset

of the state space. Assume we can calculate a lower bound on the optimal cost to move

from the start through a sample and to the goal. If a steering method is available, this

bound can be calculated as the optimal cost ignoring obstacles. If this lower bound

is larger than the current solution, the sample cannot improve the current solution,

is not part of the informed subset and can be ignored.

For systems without differential constraints and the Euclidean distance as cost
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function, the informed subset is ellipsoidal [10]. This ellipsoidal subset can be param-

eterized and sampled directly [12].

For systems with differential constraints, however, the subset of the space that

can improve the solution is more complex than an ellipsoidal subset. No methods to

sample directly within that space exist. Instead, samples within the informed subset

can be found using rejection sampling, i.e. sampling the full state space and rejecting

those samples that cannot improve the current solution. However, especially in high-

dimensional spaces, the informed subset might only be a tiny fraction of the whole

state space. In this case most samples get rejected and rejection sampling is very

slow. In our experiments up to 99.99% of all samples get rejected. This can lead to

a sampling-based planner spending most of its time rejection sampling.

To improve the efficiency of informed sampling without the need to explicitly

parameterize the informed subset, we introduce hierarchical rejection sampling (HRS)

in Section 7.2. HRS hierarchically combines partial samples into larger samples,

making accept/reject decisions at every level. When a partial sample is rejected, only

the partial information needs to be resampled. This leads to an efficiency improvement

that is exponential in the number of dimensions.

7.2 Hierarchical Rejection Sampling

For systems with differential constraints no method to explicitly sample within the

informed subset exists. Instead, we have to sample the full state space and then test

the sample for validity. This can be very inefficient as the informed subset might only

be a tiny fraction of the whole state space. This is especially true in high-dimensional

spaces. Therefore, we propose hierarchical rejection sampling to find valid samples

faster without having to explicitly parameterize the informed subset.

Instead of sampling a whole state and then deciding whether to accept or reject

it, we build up a sample hierarchically making accept or reject decisions at every
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(a) (b) (c) (d) (e)

Figure 22: Illustration of hierarchical rejection sampling using a very simple exam-
ple (2 dimensions, no differential constraints): (a) current solution trajectory and
informed subset, (b) standard rejection sampling, (c) - (e) hierarchical rejection sam-
pling.

level based on partial state samples. Only the highest level in the hierarchy makes a

decision based on the whole state sample. But instead of sampling the whole state,

it combines two partial samples retrieved from the next lower level. The samples

passed to the highest level from the next lower level have already been tested by the

next lower level based on partial information. If the partial information is enough to

reject the partial sample, only the partial sample gets resampled. In certain cases this

reduces the amount of samples necessary and speeds up the sampling dramatically.

7.2.1 A Simple Example

Figure 22 uses a very simple example to demonstrate hierarchical rejection sampling

and why it leads to more efficient sampling. The example uses a two-dimensional

problem without differential constraints. Note, that we are using this simple example

only to visualize hierarchical rejection sampling. Hierarchical rejection sampling is not

needed for this problem, because the informed subset can be represented explicitly.

Figure 22(a) shows a planning problem with start and goal states and obstacles.

It also shows current, suboptimal solution trajectory. The white ellipse marks the

informed subset, in which a sample has to lie in order to be able to improve the

solution trajectory. The informed subset covers 1/8 of the state space. The axis-

aligned bounding box around it shown in Figure 23 is a square and covers 1/4 of the
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state space.

Figure 22(b) shows samples produced by standard rejection sampling. Since the

informed subset covers 1/8 of the whole state space, we need in average 8 samples to

find one valid sample (shown in green). Since the state space is 2-dimensional, these

8 samples consist of 16 scalar samples (shown as lines).

Figure 22(c)-(e) visualize hierarchical rejection sampling. In Figure 22(c) only

the horizontal dimension is considered. There are 4 partial, 1-dimensional samples

shown. Even though only partial samples are conidered, 2 out of 4 samples can be

rejected. This is because mo matter what the value of the vertical dimension is,

those partial samples can never result in a full sample that lies within the informed

subset. Figure 22(c) shows the same for the vertical dimension with 2 out of 4 samples

being rejected. Figure 22(d) combines the 4 partial, 1-dimensional samples into 2 full

samples. Only one of the 2 full samples lies within the informed subset. In Figures

22(c) and 22(d) a total of 8 scalar samples are generated.

In this simple example in average hierarchical rejection sampling generates half

as many scalar samples as standard rejection sampling. Admittedly, this is not a big

improvement. However, the improvement grows bigger when increasing the number

of dimensions. In fact, the efficiency improvement caused by hierarchical rejection

sampling grows exponentially with the number of dimensions. Consider the axis-

aligned bounding box around the informed subset. The edge length of the box is half

the length of the state space in every dimension. While Figure 23 shows this box in

2 dimensions, we can straight-forwardly extent this scenario to d dimensions. The

volume of the box is
(
1
2

)d
of the volume of the whole state space. Thus, for standard

rejection sampling the average number of scalar samples required to find one sample

within the box is

d2d (77)
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Figure 23: Cube with half the edge length of the state space in every dimension

If we use hierarchical rejection sampling and first sample each dimension indi-

vidually, we require in average 2 scalar samples for each dimension. Since we are

considering the whole bounding box instead of just the informed subset, a full sample

retrieved by combining valid partial samples is always valid. Thus, for hierarchical

rejection sampling the average number of scalar samples required to find one sample

within the box is

2d (78)

The fact that the number of scalar samples required by hierarchical rejection sam-

pling in this example is only linear in the number of dimensions instead of exponential

explains the advantage of hierarchical rejection sampling in high-dimensional spaces.

7.2.2 Algorithm

Figure 24 visualizes the hierarchical rejection sampling algorithm using a 4-dimensional

problem. At every node reject/accept decisions are made based on partial state in-

formation. Xi,j represents subspace of the state space X that only consists of the

dimensions i to j. Leaf nodes sample a single dimension until a scalar sample is

accepted. Interior nodes combine two partial samples. If the combined sample is

rejected, its whole subtree gets resampled.

Algorithm 6 shows a recursive implementation of hierarchical rejection sampling.

The parameters i and j specify the currently considered subspace Xi,j. Dimensions

i - j are considered for calculating a lower bound on the cost of a trajectory through

a sample and for making an accept/reject decision. In order to make an accept/reject
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(c) If rejected, go back to (a).
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(g) If rejected, go back to (a).

Figure 24: Hierarchical rejection sampling: The sample gets build bottom-up along
a tree structure. Whenever a node rejects part of a state, only its subtree gets
resampled. Parts that have already been sampled are shown in gray. The active node
is circled.

decision, the start state xstart, goal state xgoal and the cost cbest of the best solution

trajectory found so far are provided by the planning algorithm. x, cstart and cgoal are

outputs of the algorithm. x is the state sample that is being generated. cstart and

cgoal are lower bounds on the cost to move from the start state to the sample and from

the sample to the goal state respectively. The algorithm also updates a vector n with

a size equaling the number of nodes in the tree representing the sampling hierarchy:

2d− 1. Each element of n is associated with one node in the sampling hierarchy and

stores the number of samples drawn by that node from its children. We call these the

numbers of explicit samples. The numbers of explicit samples are updated in lines 6

and 15. For more details on the use of n see Section 7.2.4.
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Algorithm 6: HRS(i, j,x, cstart, cgoal)

1 if i = j then
2 repeat
3 xi ← SampleLeaf(i);
4 cstart ← CalculateLeaf(xstart,x, i);
5 cgoal ← CalculateLeaf(x,xgoal, i);
6 n2i ← n2i + 1;

7 until cstart + cgoal < cbest;

8 else
9 m← b i+j

2
c;

10 repeat
11 HRS(i,m,x, cstart, cgoal);
12 HRS(m+1, j,x, c′start, c

′
goal);

13 cstart ← Combine(xstart,x, i,m, j, cstart, c
′
start);

14 cgoal ← Combine(x,xgoal, i,m, j, cgoal, c
′
goal);

15 n2m+1 ← n2m+1 + 1;

16 until cstart + cgoal < cbest;

Lines 9 - 16 handle interior nodes, while lines 1 - 7 handle leaf nodes. Interior

nodes divide the considered set of dimensions in two parts. Line 9 calculates the split

point. Lines 11 and 12 recursively call the algorithm to generate two partial samples.

Using only the partial information available from dimensions i - j, lines 13 and 14

calculate a lower bound on the costs to move from the start to the sample and from

the sample to the goal. If the sum of the lower bounds is larger than cbest, the sample

is rejected and the process is repeated. The process for leaf nodes is similar. But

instead of recursively sampling two partial samples, it just samples a scalar in line 3.

7.2.3 Ordering and Grouping of Dimensions

The algorithm assumes an ordering of the dimensions. It is advantageous to order

dimensions such that those with a higher degree of dependency on each other in

relation to cost are combined on lower levels of the hierarchy. In our experiments,

position and velocity of a single joint have a higher dependency on each other than

dimensions associated with different joints. We do not expect the ordering of the

different joints to have a major effect. Therefore, in our experiments, we just use the
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Figure 25: Visualization of numbers of explicit (n) and implicit samples (n̂) for every
node.

physical ordering of the joints within the arm.

For simplicity we assumed so far that leaf nodes consider only a single dimension.

However, the algorithm works the same if leaf nodes represent multiple dimensions.

In fact, in our experiments we do not sample position and velocity of a single joint

hierarchically. They are both part of the same leaf node and sampled and rejected

together.

7.2.4 Implicit Samples

For determining the connection threshold of the RRT* and for evaluation purposes,

we need to know the total number of samples including rejected ones. With standard

rejection sampling we can easily count the states we sampled. With hierarchical

rejection sampling, however, it is not as easy, since we do not explicitly sample every

state. Instead, we need to estimate the number of samples that would have been

necessary if we had uniformly sampled complete states. We call these samples implicit

samples.

During the sampling process we collect information that allows us to calculate

the number of implicit samples generated since the last time the informed subset
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changed, i.e. the solution cost decreased. Every time the solution cost decreases the

number of implicit samples is updated and the collected information is reset to zero.

In the following we describe what information is collected and how the number of

implicit samples since the last solution cost decrease is calculated. Note, the rest of

this chapter only considers the number of implicit samples since the last solution cost

decrease and, thus, assumes the informed subset does not change.

For each node Xi,j in the tree we store the number ni,j of explicit samples it has

generated. This means the number of times it has queried its two children for a

sample and made an accept/reject decision. This is also the number of times its two

children have accepted a sample. Note that both children accept the same number

of samples, because they both get queried the same number of times for a sample by

Xi,j. This is visualized in Figure 25. We can think of ni,j as two flows of samples

from its children to Xi,j.

We can also assign a number n̂i,j of implicit samples to each node. The numbers

n̂i,j do not need to be stored explicitly since they can be calculated from the numbers

of explicit samples ni,j of all nodes. The number n̂i,j of implicit samples of a node Xi,j

can be calculated recursively from the number ni,j of explicit samples and the numbers

n̂i,m and n̂m+1, j of implicit samples of its child nodes. For each child node we can

calculate the percentage of implicit samples it accepts. This percentage or probability

is calculated as the quotient of accepted samples and total implicit samples

ni,j
n̂i,m

and
ni,j

n̂m+1, j

(79)

where m = b i+j
2
c.

Imagine the node Xi,j would just use any two implicit samples from its child nodes,

i. e. samples that were not necessarily accepted by its child nodes. The probability

that this would generate a sample that would get accepted by both child nodes is

the product of the probabilities that each child node accepts one of its own implicit
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samples

ni,j
n̂i,m

ni,j
n̂m+1, j

(80)

We then divide the number ni,j of samples the children of Xi,j accepted by the

probability that an implicit sample would get accepted. This gives us the total number

of implicit samples that would have been necessary if we had sampled in the traditional

way.

n̂i,j = ni,j

/(
ni,j
n̂i,m

ni,j
n̂m+1, j

)
(81)

=
n̂i,j · n̂m+1, j

ni,j
(82)

For leaf nodes with i = j the number of implicit samples equals the number of

explicit ones.

n̂i,i = ni,i (83)

Combining the recursive formula with the base case for leaf nodes, we can bring

the formula into closed form.

n̂0,d−1 =

∏
Xi,j is leaf node

ni,j∏
Xi,j is interior node

ni,j
(84)

In order to store the values of ni,j we can flatten the two indeces i and j into a

single one: the index of the node is the in-order traversal of the tree, i.e.

For i 6= j : ni,j ≡ n2m+1 (85)

For i = j : ni,j ≡ n2i (86)

Eq. 84 can then be written as

n̂0,d−1 =

d−1∏
k=0

n2k

d−2∏
k=0

n2k+1

(87)
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7.3 Experiments

7.3.1 Example Problems

We evaluate our planner on three example problems. Table 5 shows parameters of

the problems. The problems are described below. All problems assume goal states

to be given in joint space. We automatically generate a set of joint-space goals from

a given workspace goal. This conversion is not part of the algorithms and evaluation

presented in this thesis.

7.3.1.1 Problem 1: Hammering

The first problem is the same as the one described in Section 6.3. A simulated 7-

DOF robot arm is given the task to hit a nail at a given velocity while avoiding

an obstacle. Because of the non-zero goal velocity the problem cannot be solved by

a geometric planner. The state space, consisting of joint positions and velocities,

is 14-dimensional. To the best of our knowledge the highest-dimensional space a

kinodynamic RRT* has been applied to before is 10-dimensional [56]. The problem

and a solution trajectory are shown in Figure 28.

7.3.1.2 Problem 2: Batting

Unlike the first problem, the second example problem involves a real robot. We use

a KUKA KR 210 robot arm. This problem demonstrates that a trajectory generated

by an acceleration-limited planner can be executed on a real robot at high velocity.

Again, the goal is to hit an object, a ball in this case, at a velocity of 5 m/s. The

Table 5: Parameters of the example problems

state space end-effector velocity acceleration

task DOF dimensions # goals goal velocity limit limit

hammering 7 14 100 0.6 m/s 90 ◦/s 45 ◦/s2

batting 5 10 50 5.0 m/s 90 ◦/s 60 ◦/s2

pick and place 7 14 2 0.0 m/s 90 ◦/s 45 ◦/s2
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(a) Reality (b) Simulation

Figure 26: Batting problem

problem is visualized in Figure 26. A stack of boxes is placed strategically between

the robot and the ball such that the shortest trajectory is in collision and the robot

needs to plan around the obstacle. While the robot has 6 DOF, we only make use of

5 of them. Thus, the planning problem has 10 dimensions.

7.3.1.3 Problem 3: Pick and Place

While the previous two example problems involve non-zero goal velocities, in this

problem, both, start and goal velocity are zero, which is typical for pick-and-place

operations. The robot has to move a box through two vertical obstacles. There are

two goal states, which are almost identical. Only the first joint differs by 360 degrees.

This results in the planner being able to choose the direction in which to rotate the

first joint. The problem is shown in Figure 27.

7.3.2 Computational Efficiency

We ran the kinodynamic RRT* algorithm described in Section 2.2.2.2 in combina-

tion with the double integrator steering method described in Chapter 5 on the three

motion planning problems described in Section 7.3.1. We deviate from the standard
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(a) Start state (b) Goal state 1 (c) Goal state 2

Figure 27: Pick-and-place problem

kinodynamic RRT* [23] by using an infinite connection threshold and by extending

the tree all the way to a sample instead of just by a small time step. In addition,

we employ hierarchical rejection sampling presented in Section 7.2 to improve effi-

ciency. Figures 28, 29, 30 and 31 show solution trajectories for the example problems

retrieved after 60 s of computation time.

Below we evaluate the convergence of the RRT* algorithm and the effect of hierar-

chical rejection sampling by comparing it to both, uninformed sampling and standard

rejection sampling. Uninformed sampling does not reject any samples. Standard re-

jection sampling samples a whole state and then makes a accept/reject decision. For

a fair comparison we implement standard rejection sampling as efficient as possible.

Even standard rejection sampling might make reject decisions early before having

finished calculating the lower bound on the cost to move through the sample. To do

that it passes the current solution cost to the steering method to allow the steering

method to abort the calculations as soon as the current solution cost is exceeded.

However, unlike hierarchical rejection sampling, standard rejection sampling always

rejects and resamples the complete sample. We compare the performance of stan-

dard and hierarchical rejection sampling with and without additional graph pruning

(described in Section 2.2.4.2). All results shown below are averages over 100 runs
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on a single core of an Intel Xeon E5-1620 CPU at 3.6 GHz. Some graphs also show

standard deviations as vertical bars.

Figure 33 shows the convergence of the RRT* algorithm for the three example

problems. While informed standard rejection sampling improves over uninformed

sampling, hierarchical rejection sampling improves efficiency even further, leading to

the planner finding lower-cost solution trajectories faster. This is the case with or

without graph pruning. For the hammering and pick-and-place problems the improve-

ment is significant, while for the lower-dimensional batting problem the improvement

is small.

To measure the efficiency improvement, we compare the average computation time

required by different sampling strategies to achieve the same solution cost. Figure 34

shows this. This figure is similar to Figure 33 but flips the two axes. Figure 35 shows

the efficiency improvement of hierarchical rejection sampling. The efficiency improve-

ment is the factor by which the computation time of standard rejection sampling is

larger than the one of hierarchical rejection sampling to achieve the same solution

cost. This data is also shown in Table 7. The improvement grows larger as time goes

by and the solution cost shrinks, since more and more samples are rejected and a

larger and larger fraction of time is spent sampling. Hierarchical rejection sampling

improves efficiency by up to two orders of magnitude.

The following figures give additional insight into why hierarchical rejection sam-

pling improves performance. Figure 36 shows the percentage of samples that get

accepted by standard rejection sampling. For the hammering problem more than

99.99 % of samples get rejected. This leads to the planner spending most of its

computation time on rejecting samples as Figure 37 shows. Hierarchical rejection

sampling reduces the time required for finding valid samples. Because hierarchical

rejection sampling spends less time sampling, the planner can generate a lot more

samples in the same amount of time. Table 8 lists the number of samples generated
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within 60 seconds by the planning algorithm with different sampling strategies with

and without graph pruning. For hierarchical rejection sampling the table lists the

number of implicit samples, i.e. the number of samples that standard rejection sam-

pling would have to generate in order to accept the same number of samples. This

gives a measure on how densely the informed subset is covered with samples. The

density of samples is directly correlated to the quality of the solution trajectory. A

denser sample distribution results in a lower-cost solution. The RRT* with hierar-

chical rejection sampling generates up to 35 billion implicit samples in 60 seconds.

I.e. the samples fill the informed subset as densely as if we had sampled 35 billion

samples in the whole state space.

7.3.3 Optimality

The hammering and batting problems involve non-zero goal velocities and, thus, can-

not be solved by a geometric planner. The pick-and-place problem, however, can

be solved by a geometric planner. In this section we show that, unlike acceleration-

limited planning, combining a geometric planner with acceleration-limited post-processing

does not always result in an optimal solution. Table 6 compares the solution cost ob-

tained by different planners. The table shows the average solution cost (and standard

deviation) obtained by running the acceleration-limited planner 100 times for 60 sec-

onds. We compare this to a geometric planner combined with different post-processing

strategies: First, following the geometric path exactly, coming to a complete stop at

Table 6: Pick and place: Unlike geometric planning with post-processing,
acceleration-limited planning converges to the optimal solution.

algorithm solution cost

geometric RRT* 9.88 s
+ circular blends + path following (Chapter 3) 7.08 s
+ acceleration-limited shortcuts [18] 5.54 s

acceleration-limited RRT* (this chapter) 4.93 s (± 0.018 s)
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every waypoint. Second, using the method presented in Chapter 3 of first adding cir-

cular blends around waypoints and then finding the optimal time-parameterization

along the geometric path. Third, using the acceleration-limited shortcut method pro-

posed by Hauser and Ng-Thow-Hing [18]. We ran the geometric algorithms only once

but for a long time (10 minutes) to make sure they converged. However, the solution

costs they converge to are much higher than the cost of the solution found by the

acceleration-limited planner.

Figure 32 shows the trajectory generated by the geometric planner with acceleration-

limited shortcuts. It significantly differs from the one generated by the acceleration-

limited planner in Figure 31. The geometric planner chooses to rotate the first joint in

the opposite direction than the acceleration-limited planner. While the acceleration-

limited post-processing can smooth the path, it cannot fundamentally change the

solution, will not change the rotation direction of the first joint and, thus, will not

find the optimal solution.
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Table 7: Average computation time required to reach given solution costs

without graph pruning with graph pruning

un- standard eff. standard eff.
ta

sk solution informed rejection gain rejection gain
cost sampling sampling HRS factor sampling HRS factor

h
am

m
er

in
g

7.0 s 22.4 s 0.9 s 1.0 s 0.9 0.5 s 0.6 s 0.9

6.5 s 176.9 s 1.3 s 1.5 s 0.9 0.7 s 0.8 s 0.9

6.0 s 2.6 s 2.3 s 1.1 1.6 s 1.4 s 1.2

5.5 s 23.3 s 5.3 s 4.4 21.4 s 3.4 s 6.4

5.2 s 216.2 s 12.5 s 17.3 206.6 s 9.9 s 20.9

5.0 s 1793.2 s 40.4 s 44.4 1806.1 s 33.9 s 53.2

b
at

ti
n
g

5.5 s 6.06 s 0.45 s 0.46 s 1.0 0.30 s 0.32 s 1.0

5.0 s 77.48 s 0.58 s 0.59 s 1.0 0.38 s 0.38 s 1.0

4.5 s 1.18 s 0.93 s 1.3 0.77 s 0.57 s 1.4

4.26 s 36.18 s 7.73 s 4.7 31.51 s 5.05 s 6.2

p
ic

k
an

d
p
la

ce

8.0 s 95.3 s 8.5 s 10.2 s 0.8 3.1 s 2.3 s 1.3

7.0 s 14.6 s 16.0 s 0.9 3.9 s 3.2 s 1.2

6.0 s 26.9 s 24.4 s 1.1 7.0 s 4.0 s 1.7

5.5 s 67.7 s 37.6 s 1.8 33.3 s 4.8 s 6.9

5.2 s 284.5 s 6.8 s 42.1

5.0 s 2828.8 s 17.5 s 161.4

Figure 28: Hammering: Solution trajectory after 60 s of computation time
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(a) 0.0 s (b) 0.7 s (c) 1.4 s

(d) 2.1 s (e) 2.5 s

Figure 29: Batting without obstacle: Solution trajectory after 60 s of computation
time

(a) 0.0 s (b) 1.4 s (c) 2.8 s

(d) 4.2 s (e) 4.4 s

Figure 30: Batting: Solution trajectory after 60 s of computation time
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Figure 31: Pick and place: Solution trajectory after 60s of computation time

Figure 32: Pick and place: Solution trajectory obtained by combining a geometric
planner with acceleration-limited shortcutting
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Figure 33: Convergence for different sampling strategies (lower is better)
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Figure 34: Computation time required to reach solution cost (lower is better)
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Figure 35: Efficiency gain of HRS
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Figure 36: Sample acceptance rate of standard rejection sampling
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Figure 37: Time spent sampling as fraction of total computation time
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Table 8: Average number of (implicit) samples generated within 60 s

ta
sk

algorithm (implicit) samples

h
am

m
er

in
g uninformed 7,340

rejection sampling 11,600,000

rejection sampling & graph pruning 12,100,000

HRS 1,230,000,000

HRS & graph pruning 1,370,000,000

b
at

ti
n
g

uninformed 15,200

rejection sampling 23,700,000

rejection sampling & graph pruning 25,600,000

HRS 103,000,000

HRS & graph pruning 144,000,000

p
ic

k
an

d
p
la

ce uninformed 26,100

rejection sampling 40,400,000

rejection sampling & graph pruning 72,600,000

HRS 1,180,000,000

HRS & graph pruning 35,700,000,000
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CHAPTER VIII

CONCLUSION

8.1 Contributions

8.1.1 Acceleration-Limited Planning

We presented acceleration-limited planning as a middle ground between pure ge-

ometric planning and planning with full dynamics. Acceleration-limited planning

considers robot dynamics more closely than pure geometric planning (which does

not at all). This allows to solve problems involving non-zero start or goal velocities,

such as the hammering task we presented or online replanning. In addition, even if

start and goal velocities are zero, acceleration-limited planning has some advantages

over geometric planning with post-processing for some problems. Unlike geometric

planning with post-processing, acceleration-limited planning is asymptotically opti-

mal in regard to the system with acceleration limits. In a few cases this results in

acceleration-limited planning finding better solutions than geometric planning com-

bined with post-processing. We presented one such case.

At the same time, acceleration-limited planning is a less powerful problem formula-

tion than planning with full dynamics. For example, it cannot find a swing-up trajec-

tory for a weakly actuated simple pendulum. Also, an optimal trajectory considering

acceleration limits is not optimal when considering torque limits. However, unlike

planning with full dynamics, acceleration-limited planning can be solved systemat-

ically. Unlike any existing planner for arbitrary dynamics, our acceleration-limited

planner is efficient, parameter-free, probabilistically complete and asymptotically op-

timal. In contrast, as we showed, the standard kinodynamic RRT for planning with

full dynamics is not efficient and in general not probabilistically complete. While
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optimization-based methods are very powerful, they require parameter tuning.

We used the hammering task, which involves non-zero goal velocities, as an exam-

ple problem to show the advantage of acceleration-limited planning. As we showed

in Chapter 6, neither a geometric planner nor existing sampling-based planners for

planning with full dynamics can solve this problem. On one side, geometric plan-

ning is unable to consider the required goal velocity. On the other side, the standard

kinodynamic RRT with a Euclidean distance metric, which can consider arbitrary

dynamics, is too inefficient to solve the problem in a reasonable amount of time. Our

acceleration-limited planner, in contrast, can find a feasible solution for the ham-

mering task in less than 100 ms. In Chapter 7 we also presented an asymptotically

optimal planner based on the RRT* algorithm that converges to the optimal solution

and provides good-quality solutions in less than one minute. We presented one ex-

ample task where this asymptotically optimal planner provides a benefit even if start

and goal velocities are zero. While existing approaches that combine a geometric

planner with post-processing to satisfy acceleration limits might yield near-optimal

solutions in most cases, we demonstrated that for this example task they do not.

We also applied our planner to a real industrial robot arm to demonstrate that our

approach leads to smooth trajectories that can be directly executed on a real robot.

8.1.2 Contributions to General Kinodynamic Planning

In addition to proposing acceleration-limited planning, we made contributions that

are of interest not only to acceleration-limited planning but to kinodynamic planning

in general. For time-optimal path following in Chapter 3, we pointed out the im-

portance of numerical considerations as well as the problem of choosing the optimal

acceleration at one of the switching point types. These findings are important even

if using torque limits instead of acceleration limits. Our proof of the incompleteness

of the standard kinodynamic RRT in Chapter 4 will hopefully spur further research
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into the requirements to guarantee probabilistic completeness and lead to a better

understanding how to apply sampling-based planners to arbitrary dynamic systems.

Hierarchical rejection sampling presented in Chapter 7 can improve the efficiency

of any asymptotically optimal sampling-based planner for problems with differential

constraints. In our experiments that improvement was up to two orders of magnitude.

8.2 Future Work and Open Problems

In addition to our contributions, further improvements to the double-integrator minimum-

time steering method can be made as described in Sections 8.2.1 and 8.2.2. The

advantage of acceleration-limited planning could be further demonstrated by apply-

ing it to online replanning as mentioned in Section 8.2.3. Section 8.2.4 points out a

limitation of our current approach. We consider acceleration-limited planning as a

step towards planning with full dynamics. Sections 8.2.5 and 8.2.6 present open prob-

lems that we think need to be solved to achieve efficient and optimal sampling-based

planning with full dynamics.

8.2.1 Simpler Steering Method for Double Integrators

The steering method for solving the double-integrator minimum-time problem can be

simplified, resulting in faster, more compact and more robust code. Since asymptot-

ically optimal planners spend a lot of time calculating distances using the steering

method, this can significantly speed up the planning process.

Our work and all the previous work find the minimum time by setting up a system

of two equations with the duration of the two min and max acceleration segments ta1

and ta2 as unknown variables. This results in Eq. 66 and 67. This requires solving a

quadratic equation of the form

ax2 + bx+ c = 0 (88)

However, by setting up the equations differently, the problem can be solved more
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easily. Instead of using the duration of the two minimum and maximum acceleration

segments ta1 and ta2, one can use the extremal velocity of the trajectory as unknown

variable. From the extremal velocity and the acceleration limits it is easy to calculate

the duration of the two segments. Setting up the problem in this way leads to a

quadratic equation of the form

ax2 + c = 0 (89)

This can be solved by just taking a square root. This is easier than solving the full

quadratic equation above.

8.2.2 Consider Joint Limits within Steering Method

Like Hauser et al. [18] our steering method currently does not consider joint limits.

Instead, the collision checker rejects trajectories that exceed joint limits. However,

this might result in a connection being rejected, even though a trajectory satisfying

joint limits would have existed. Joint limits can be directly incorporated into the

steering method, minimizing acceleration with the additional constraint of the joint

limits. This might lead to a small efficiency improvement.

Kröger et al. [29] choose the trajectory such that it always satisfies joint limits if

possible. However, while we and [18] minimize acceleration when choosing trajectories

for each joint to reach the goal at the determined minimum time, [29] constrains the

trajectories to only use extremal and zero accelerations. This leads to larger-than-

necessary accelerations.

8.2.3 Online Replanning

One application of acceleration-limited planning that we have used as a motivational

example but have not explored is online replanning. Acceleration-limited planning

is very suitable for online replanning, because online replanning involves a non-zero
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start state, which geometric planning cannot deal with. At the same time, a steer-

ing method is available for acceleration-limited planning. This results in efficient

algorithms, which is required to achieve the short reaction times necessary for online

replanning.

8.2.4 Task Constraints

Our work does not consider task constraints. This is a disadvantage compared with

optimization-based approaches (see Section 2.3), which can easily consider both ac-

tuator limitations and task constraints. Whether there is a way to incorporate task

constraints is an open problem.

8.2.5 Connection Threshold for Asymptotically Optimal Planners

As described in Section 2.2.2.1, it is not obvious how to choose the connection thresh-

old of asymptotically optimal sampling-based planners for problems with differen-

tial constraints such that optimality is guaranteed. More work is necessary on this

problem. We avoided this problem in our work by choosing an infinite connection

threshold, which guarantees optimality but might have made our planner less efficient.

In addition, for problems with or without differential constraints, it is unknown

how to choose the connection threshold optimally. Existing work only deals with find-

ing the lowest possible threshold that still guarantees asymptotic optimality. While

choosing the connection threshold as low as possible is a reasonable choice, it has

not been studied whether this actually leads to the fastest convergence in all cases or

whether a higher connection threshold might sometimes be better.

8.2.6 Distance Functions and Probabilistic Completeness of RRTs

Our work focuses on a problem for which a steering method is available. If a steering

method is available, we have access to an high-quality distance function, i.e. the

cost to move between two states without obstacles. However, for many systems

101



a steering method is not available. Instead, kinodynamic RRTs make use of an

incremental simulator, simulating the systems dynamics forward for multiple control

input trajectories and then selecting one of them. This selection is usually made

based on which control input results in the new state being closest to the sampled

state. Closeness is measured by a user-provided distance function. For systems

without a steering method, good distance functions usually do not exist. Instead, a

Euclidean distance metric is often used. There have been attempts at using better-

informed distance functions, for example using the cost of the optimal trajectory for

a linearized system as the distance function for a nonlinear system [14, 45, 17, 56]

(see Section 2.2.3). However, there is little understanding in what constitutes a

good distance function other than some closeness to the real optimal cost to move

between two states. There is no measure to decide which of two distance functions is

better other than testing them by running an RRT on an example problem. A better

understanding of what properties of a distance function cause good performance of

an RRT could help find better distance functions. For example, one may wonder

whether it is helpful for a distance function to give an upper or lower bound on the

real cost.

Not only do we not know what constitutes a good distance function, as we have

shown in Chapter 4, we do not even know what requirements a distance function needs

to satisfy to guarantee probabilistic completeness of the standard kinodynamic RRT.

Studying the requirements for probabilistic completeness could provide a foundation

for understanding what constitutes a good distance function.

8.3 Final Remarks

As described in Sections 8.2.5 and 8.2.6, there are still a lot of open problems to

solve on the way to achieve efficient and optimal motion planning considering the full
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dynamics of robot manipulators and other systems. In the meantime, acceleration-

limited planning provides a good approximation for many robots, e. g. industrial

manipulators, that can be efficiently solved today.
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