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Dynamic Chess: Strategic Planning for Robot Motion

Tobias Kunz, Peter Kingston, Mike Stilman and Magnus Egerstedt

Abstract— We introduce and experimentally validate a novel
algorithmic model for physical human-robot interaction with
hybrid dynamics. Our computational solutions are complemen-
tary to passive and compliant hardware. We focus on the case
where human motion can be predicted. In these cases, the
robot can select optimal motions in response to human actions
and maximize safety. By representing the domain as a Markov
Game, we enable the robot to not only react to the human but
also to construct an infinite horizon optimal policy of actions
and responses. Experimentally, we apply our model to simulated
robot sword defense. Our approach enables a simulated 7-DOF
robot arm to block known attacks in any sequence. We generate
optimized blocks and apply game theoretic tools to choose the
best action for the defender in the presence of an intelligent
adversary.

I. INTRODUCTION

In order to deploy safe and flexible robots for service
and automation, robots must act safely in close contact
with humans. This includes positive interactions such as
collaborative tasks and the absence of negative interactions
such as human-robot collisions. The goal of this work is
to optimize robot motion such that it maintains maximal
safety regardless of any change in the environment including
the most dangerous choices made by humans who share the
robot’s workspace.

In order to maximally protect humans and robots, the
robot should take into account all possible situations and
plan for the worst. Such reasoning is similar to decision
making in strategy games like chess where the players not
only choose good moves for themselves but also moves that
prevent their opponent from winning. The robot wins when
safety is maintained. It loses when the opponent manages
to instigate danger. In contrast to chess, which is entirely
discrete, the dynamics of motion have both discrete and
continuous components: Human choices of action types may
be discrete, yet the actual motion involved in executing each
action is continuous. Likewise, the safest robot response also
has both discrete and continuous components. We introduce
a theoretical model that represents hybrid physical games
and present a method for solving these games in real-time.

Our approach is validated in the domain of human-robot
fencing. This application represents some of the most critical
challenges for dynamic interactions between robots and
humans: (1) prediction of human intentions and (2) real-
time robot response. For this example, we concentrate on
the following task: A robot arm, equipped with a sword must
defend from a series of attacks initiated by a similarly-armed
human adversary (Fig. 1).
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Fig. 1: ConAn fencing demonstrates discrete strategies in continuous
domains.

II. RELATED WORK

Prediction of human intentions by robots has been studied in
both collaborative and antagonistic settings. In the collabora-
tive context, both human-in-the-loop control methodologies
(e.g. [1], in which an automatic controller works in concert
with a human to achieve an objective), and improved human-
robot interfaces (as investigated in [2] and [3], and motivated
by field studies like [4]) may go a long way to achieving
this. In short, humans should be able to communicate their
intentions to a robot directly, efficiently trading the amount
of direction required from the human, and the amount of
estimation required of the robot.

In the antagonistic setting, humans may attempt to actively
hide their intentions from the robot. This idea is explored
explicitly in a somewhat different context in [5]), which com-
pared to the collaborative setting raises both new challenges
and new problem structure that can be utilized. On the one
hand, the estimation task is complicated by the possibility of
deception. On the other there exists game structure, known
to both the human and the robot, which can be used inform
the robot’s decisions. We take advantage of game structure.

With regard to estimation, ongoing work in numerous
fields classifies and predicts human behavior. For instance,
there exists considerable work on plan recognition [6], [7].
More recently, in [8], the authors develop a hybrid Hid-
den Markov Observer to estimate human intent for active
prosthetic and cooperative assembly applications. From a
slightly different angle, [9] uses Dynamic Bayesian Networks
to attach intent labels to observed actions.

Other work investigates adversarial interactions from a
game-theoretic perspective. Much of this domain, motivated
by robotic soccer competitions like RoboCup, considers
robots that play against other robots. For instance, in [10],
the authors advance zero-sum Markov Games as a natural
framework for handling adversarial scenarios. They describe
a modified Q-learning algorithm that learns optimal sta-
tionary policies that play these games. One application is
a simplified model of robot soccer. Closely-related work
includes [11] which gives a dynamic programming algorithm
for solving partially-observable stochastic Markov Games,
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and [12], which considers methods for approximate dy-
namic programming. Our approach is strongly influenced
by literature on Markov Games. We contribute human-robot
interaction and formalize the relationship between discrete
and continuous components of moves.

III. HYBRID ADVERSARIAL INTERACTION MODEL

In the subsections that follow, we describe a hybrid-time
model for adversarial interaction between two players. The
first, dubbed the attacker, has the initiative, and is tasked with
performing actions, called attacks, that oppose the interests
of the second player, who we call the defender. The defender
seeks to avoid this by reacting to the attacker’s actions
in a way that simultaneously prevents the attacker from
succeeding in the present, and that also increases future
attack difficulty.

A. Continuous Dynamics and Discrete Moves

The interaction model under consideration is formed from
the interplay of the continuous and the discrete. The two
players are assumed to control real physical systems, and
their movements are both subject to differential constraints.
Hence, the problem is continuous. However, both players are
also assumed to have finite repertoires of behaviors. Thus the
problem is also discrete. We start by defining the attacker’s
continuous-time dynamics as follows:

ẋ(t) = f(x(t), u(t)). (1)

x(t) ∈ Rnx is a real state vector and u(t) ∈ Rmx is a
control input that the attacker may vary. We assume that the
attacker has a finite set of control input signals u1, · · · , uN ,
called attack inputs, with ui : [0,∞) → Rmx for each
i ∈ {1, · · · , N}. Each attack input ui is associated with
an initial state x0i ∈ Rnx , called the precondition, which the
attacker must be in to begin the corresponding attack. Given
the dynamics (1), each pair (ui, x

0
i ) induces a state trajectory

xi : [0,∞)→ Rnx called an attack. Finally, for each attack
precondition and state x0 ∈ Rnx , we assume the existence of
a controller ki(x0) : [0, Ti] → Rmx such that if x(0) = x0

and u(t) = ki(x
0)(t) then the dynamics (1) evolve such that

x(Ti) = x0i . In other words, each precondition is reachable
from anywhere in the state space, and for each precondition
there exists a rule that drives the system there in finite time.
We call this the transition motion.

The defender also has continuous-time dynamics:

ẏ(t) = g(y(t), v(t)), (2)

with state y(t) ∈ Rny and control input v(t) ∈ Rmy . The
discrete nature of the defender comes from a finite repertoire
of response functions r1, · · · , rM , with each rj : ([0,∞)→
Rnx)→ R+×Rny , rj = (ryj , r

T
j ) mapping from an observed

attacker state trajectory xi ∈ ([0,∞) → Rnx) to a desired
point in time rTj (xi) within the attack trajectory, at which the
attack is countered, together with a desired state ryj (xi) ∈
Rny which the defender may reach in order to counter the
attack. We assume that the defender uses a controller κ :
Rny × Rny × R+ → {v | v : [0, T ] → Rmy , T ∈ R+} ∪

HYBRID DYNAMICS()
1 for l← 1 to ∞
2 do i← ATTACKER PICKS ATTACK
3 j ← DEFENDER PICKS BLOCK(i)
4 tl ← t
5 while t < tl + Ti + rTj (xi)
6 do if t < tl + Ti
7 then ẋ(t) = f(x(t), ki(x(T ))(t− tl))
8 else ẋ(t) = f(x(t), ui(t− tl − Ti))
9 ẏ(t) = g(y(t), κ(y(tl), r

y
j (xi)(t−tl), Ti+rTj (xi)))

Alg. 1: Hybrid dynamics
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Fig. 2: Attacker and defender hybrid automata.

{X} that for each T ∈ R+ and points y0, y1 ∈ Rny either
returns (1) a control input defined for t ∈ [0, T ] such that if
y(0) = y0 and v(t) = κ(y0, y1, T )(t) in the dynamics (2),
then y(T ) = y1; or (2) the null-move symbol “X,” which
indicates that no such control input exists.

The attacker and defender then exchange moves in a se-
quence of attack-defense turns. The hybrid dynamics proceed
as described by Fig. 2 and Alg. 1.

B. The Discrete State Space

The finite sets of attacks and response functions give rise to
a finite state space. First, at any time t ∈ R we define the
joint state for the two agents as

z(t) = (x(t), y(t)) . (3)

Next, for each (i, j) ∈ {1, · · · , N}×{1, · · · ,M}, we define
zij ∈ Rnx × Rny by

zij , (xi(r
T
j (xi)), r

y
j (xi)). (4)

Notice that z(T ) ∈ {z11, z12, · · · , zNM} is a loop
invariant of algorithm 1. Hence, we define Z =
{z11, z12, · · · , zNM} ∼ {1, · · · , N}×{1, · · · ,M} to be the
discrete state space of the given hybrid dynamics.

This state space can be visualized as a square N×M grid,
similar to a chessboard. Suppose there exists a rook, which
represents the current state. A turn of game play proceeds as
follows. First, the attacker chooses a target row for the rook.
Then, knowing this choice, the defender chooses a column.
At this point the rook is moved to the square corresponding
to the joint choice of row and column, and the next turn
begins. This way the discrete state evolves into the hybrid
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Fig. 3: A discrete two player game without continuous dynamics.

dynamics. Certain moves will turn out to be more difficult
than others for the players to make (following a cost structure
introduced in section III-D), and it will be each player’s goal
to force his opponent to make costly moves.

C. A Markov Game

A Markov game between K agents consists of a set X called
the state space, together with a collection of action sets
A1, · · · ,AK (one for each agent), a set of cost functions
J1, · · · , JK : Z × A1 × · · · × AK → R that describe
how undesirable any combination of actions in a state is
for each agent, and a transition probability map ρ : X ×
A1 × · · · × AK → ∆(X ) (where ∆(X ) denotes the set of
probability distributions over X ) that returns, for each state
and any choice of actions by the players, the probability
of transitioning to any other state. In other words, a finite
Markov game is a controlled Markov chain [or Markov
Decision Process (MDP)], where the control input at each
step is determined not by a single decision-maker, but rather
as a function of decisions made by several agents.

A Markov game is zero-sum if J1 + · · ·+ JK ≡ 0 – i.e.,
if no matter what state the game is in or what actions the
players take, the total cost is constant. Games of this type
describe situations in which any player’s gain necessarily
comes at the expense of other players. It is finite if the state
space X and action sets A1, · · · ,AK are finite, deterministic
if ρ returns a deterministic distribution (in which case, with
some abuse of notation, we will write as though ρ maps
directly to states; i.e., that ρ : X × A1 × · · · × AK → X )
for all inputs, and it is a turn-taking game if, in each state
x, the map (a1, · · · , aK) 7→ ρ(x, a1, · · · , aK) depends on at
most one of the ais, i ∈ {1, · · · ,K}.

With these definitions, the adversarial interaction we have
described in the previous sections can be posed as a two-
player zero-sum finite deterministic turn-taking game, after
a suitable augmentation of the state space. The additional
states formalize the alternating-turn aspect of the game, and
encode the defender’s foreknowledge of the attacker’s choice.
These additional states, however, do not require explicit
representation. They do not significantly increase the amount
of computation required to solve the game as addressed in
section IV-B. In the remainder of this section, we will denote
the attacker and defender by A and D, respectively.

In addition to the primary states in Z introduced in section
III-B, a collection of intermediate states I = Z×{1, · · · , N}
is required, where the second component – the element of
{1, · · · , N} – is used to signal the attacker’s choice to the
defender. The entire state space is thus the disjoint union
X = Z tI. For states in Z , it is the attacker’s turn, and his

action set is AA = {u1, · · · , uN}; for states in I, it is the
defender’s turn, and his action set is AD = {r1, · · · , rM}.
Fig. 4 shows the two players taking turns. Primary states
zij ∈ Z are marked by i, j. Intermediate states are shown in
gray. Costs are given in section III-D.

What we seek to find now is a stationary, subgame-perfect,
Nash-equilibrium pair of policies for the two players of this
finite zero-sum Markov game. Stationary means that the
(stochastic) policy is a function only of the current state and
not on the time; Nash-equilibrium means that no player can
unilaterally improve his expected reward by changing his
policy; and subgame-perfect means that the policies remain
a Nash-equilibrium when restricted to any subgame. [13]

This means two things. First, each player P ∈ {A,D},
must have a function pP : X → Ak that, for each state
x ∈ X , returns the action that the agent should take in this
state; and that

(pA, pD) = arg max
pA

min
pD

E{C(pA, pD)} . (5)

In other words, we would like to find the policies that
minimize the defender’s worst case expected cost. By Nash’s
theorem for finite two-player zero-sum games, these are
also the policies that minimize the attacker’s worst case
expected cost. This corresponds to two perfectly intelligent
and conservative players, who each play the game flawlessly
in order to prevent whatever outcome is worst for themselves.

D. Move Costs

As they play the game described in the previous section, the
two players should attempt to make choices that are best
for themselves. We define best by imposing a zero-sum cost
structure on game dynamics. The defender seeks to minimize
his cost, and the attacker seeks to maximize it.

For each k ∈ N, we define the instantaneous cost

cl(pA, pD) , JD(jl−1, il−1, jl, il)− JA(il−1, jl−1, il, jl)
(6)

where il and jl are the values of i and j on the l-th iteration
of algorithm 1 when the attacker and defender make choices
according to the policies pA and pD respectively, and where
JD and JA are problem-specific cost functions that describe
how difficult it is for each of the players to make the
corresponding moves.

Then, the total discounted cost paid by the defender is,

C(pA, pD) =

∞∑
k=1

γkck(pA, pD) (7)

for some γ ∈ (0, 1) ⊂ R. Together with the previous section,
this fully specifies the Markov game played by the attacker
and defender.

IV. MODEL CONSTRUCTION AND SOLUTION

For a general hybrid adversarial problem, we construct a
model based on the expected actions of the adversary and
the capabilities of the defender.
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Fig. 4: Game with alternating turns

A. Constructing a Model

The attackers actions should achieve coverage over the set
of possible moves. The defender’s actions are chosen by
considering the defender’s capabilities with respect to the at-
tacker’s moves. For example, we propose that the defender’s
actions be explicitly optimized for each type of action by
the attacker. Notice that there may be multiple defenses for
a single attack. Even if one is locally suboptimal to another,
it may be globally optimal in the context of an extended
sequence of moves.

This can be seen as a way of making the problem
feasible by subdividing it into two steps. First, we find a
finite set of locally optimal responses. Second, we find the
global optimum constrained by the finite set of local optima.
These may be worse than the unconstrained global optimum.
Response functions should be chosen in such a way that the
constrained global optimum is as close to the unconstrained
one as possible.

B. Solving the Markov Game

The best policy for the defender is identified by using value
iteration. Any policy for the defender maps each of the in-
termediate states I to an action. The number of intermediate
states is the product of the total number of primary states Z
and the number of attacks. Value iteration is run only over
primary states. We do not explicitly store values for the more
numerous intermediate states. They are implicitly part of the
calculation as we assume that the attacker is always choosing
the worst attack for the defender. The cost of a primary state
is iteratively calculated by

Ck+1
i,j = min

i′
max
j′

(JD(i,j,i′,j′)− JA(i,j,i′) + γ · Ck
i′,j′) (8)

Ck
i,j is the cost for the primary state (i, j) at the kth

iteration. JD(i, j, i′, j′) and JA(i, j, i′) are the costs of the
defender and attacker, respectively, which consists of both
the cost for the contact state and the cost for motions that
get to the contact state. Using the computed costs for the
primary states, the optimal policy for the defender over all
intermediate states, i.e. over all primary states (i, j) and
attacks i′, is given by

j∗(i,j,i′) = arg max
j′∈{1,···,M}

(JD(i,j,i′,j′)− JA(i,j,i′) + Ci′,j′) (9)

V. CONAN: CONTACT ANTICIPATION

In this section we present sword fighting as an example
application of the adversarial interaction model between a
human and a robot.

A. Problem Description

Given the model presented in the previous sections, the
attacker is a human armed with a foam sword. The defender
is a 7-degree-of-freedom robotic arm, also grasping a foam
sword. The attacker’s goal is to strike the defender, and
the defender’s goal is to repeatedly parry these attacks by
deflecting them with its own sword. It should simultaneously
force the attacker to make difficult moves. The following
sections develop a model for this sword combat in terms
using the formal machinery previously introduced.

1) Defender Model: The defender uses a kinematic mo-
tion model where motions are constrained by joint velocity
and acceleration limits. In other words, the model for the
defender takes the form,

q̇(t) = v(t) (10)
v̇(t) = u(t) (11)

s.t.
|vi(t)| ≤ ωi

max

|ui(t)| ≤ αi
max

∀i ∈ {1, · · · , 7} (12)

where x(t) , (q, v)(t) ∈ R7 × R7 is a point in local
coordinates in the tangent bundle TQ to the mechanical
configuration manifold Q; u(t) ∈ R7 is the instantaneous
control input of joint torques; and ωmax, αmax ∈ R7

+ are joint
velocity and acceleration limits, respectively. Calling the
forward kinematic map for the end-effector h : Q→ SE(3),
one may think of h(x)(t) as the output of the system at any
time.

2) Attacker Model: In order to simplify the attacker
motion, we assume a free-flying sword and do not model the
arm of the attacker. However, we limit the motions of the
attack to the surface of a sphere. There are no acceleration
or velocity limits for the attacker.

We assume that there is a finite set of possible attack
trajectories, which are known before the fight. At the moment
the attacker starts an attack, the chosen attack is known
to the defender. There exists a function that returns the
configuration and velocity for any given sword point during
the attack. The defender can choose the block based on
this knowledge. The attacks following the current one are
unknown until they are executed.

The defender should choose the best action based on the
knowledge of the current attack and of the set of all possible
future attacks.

B. Attacker motion

In section III-A we described the attacker motion in two
stages: the actual attack and a transition motion towards the



precondition of the attack. We now describe the implemen-
tation of these two stages.

Other parts of our implementation do not rely on a specific
class of attacker motions. However, in order to generate and
represent the attacker motion easily, we restrict it to the
surface of a fixed sphere. The attacker’s sword is always
located at a given distance from a fixed point and pointed
away from it. This somewhat resembles a human swinging
a sword.

We generated N = 5 attacks at even intervals. The attacks
x1, · · · , x5 stay on geodesics. This places all attack paths on
circular segments. The circle is the intersection of the sphere
and a plane represented by its normal vector. To identify the
segment of the circle, we specify the direction of the start
location and an angle giving the length of the segment. To
specify the trajectory, we set a constant acceleration starting
at zero velocity. Given these assumptions and an additional
parameter specifying the total duration of the attack, the
trajectory is completely defined.

The transition motion, which connects the state after
a block to the beginning of an attack trajectory, is also
restricted to the surface of the sphere. However, it is not
restricted to a geodesic. To find an attacker motion on the
sphere that connects the state after a block to the state
at the beginning of an attack trajectory we use a cubic
spline. We first connect the two states using the cubic
spline in the 3-dimensional workspace. Then, we project
the spline onto the surface of the sphere. As both the start
and end positions and velocities are already on the sphere,
we achieve a valid trajectory on the sphere connecting the
two states. In our experiments, we manually selected the
duration of transitions. There were no velocity or acceleration
constraints.

C. Response functions

In section III-A we introduced response functions
r1, · · · , rM for the defender. For each attack trajectory, a
response function returns a point in time, which defines a
state of the attacker within the attack trajectory, and a state
of the defender. In the sword fighting domain the states of
the attacker and defender returned by a response function
must be such that the 2 swords are in contact. We define
the different response functions to be the global minimum
points in regard to different cost functions defined over
the joint contact state of attacker and defender. This cost
function only evaluates the contact state. It does not evaluate
the feasibility or the cost of moving to this contact state.

rj(xi) = arg min
T,y

costj(xi(T )), y) (13)

In order to find the optimal contact state, we first define
a method that determines contact states in general (section
V-C.1). We discuss different cost functions that evaluate
contact states (section V-C.2) and a method to find the global
minimum across all possibilities (section V-C.3). The search
for an optimal contact state is presently too computationally
expensive to be processed during online execution. However,
since the set of attack trajectories is finite and known, we can

Symbol Description

T Time, which defines the configuration of the attacker’s sword.
ξa, ϕa Coordinates specifying the contact point on the surface of the

attacker’s sword relative to the local coordinate frame of the
sword. ϕa = 0 at the x-axis.

ξd, ϕd Same as above on the defender’s sword
α Angle between the two swords
φ Swivel angle of the robot arm

TABLE I: Parameters used to sample a contact state

calculate the values of the response function for all possible
attack trajectories off-line.

1) Sampling contact states: Given the trajectory of the
attacker’s sword, we seek a time and arm state such that the
two swords are in contact and the sign of the contact velocity
is such that the swords converge. In this section we compute
a state such that the contact constraints is met. We are not
concerned with the quality or feasibility of the contact state
given the initial sword position.

Sampling in the configuration or phase space of the
defender’s arm is not sufficient to solve this problem. The
probability of obtaining an arm configuration that is in con-
tact with the attacker’s sword is zero. Instead, we first sample
a configuration of the defender’s sword in workspace such
that the two swords are in contact. Second, we determine
whether this sword configuration can be reached by some
configuration of the robot arm. If so, we calculate the joint
angles of the arm. Last, we pick joint velocities. We do
not sample the joint velocities as they are not part of the
optimized parameters. Instead, we directly pick the best
velocities such that the two swords converge in an optimal
state defined by the evaluation function.

To retrieve an arm configuration we sample its 7-
dimensional parameter space. The 7 parameters are shown
in Table I. T , defines the configuration of the attacker’s
sword. The 5 parameters ξa, ϕa, ξd, ϕd and α define
the defender’s sword configuration relative to the attacker’s
sword configuration. The last parameter φ represents the
extra degree of freedom of the redundant arm. This parameter
together with the defender’s sword configuration defines the
arm configuration uniquely.

Our strategy for sampling contact configurations is com-
plete. Each contact configuration can be represented by at
least one set of parameters. The contact state is calculated
from the seven parameters as follows.

The transformation of the attacker’s sword is a function
of time Ga(T ). The time parameter T defines the trans-
formation of the attacker’s sword Ga. Using Ga and the
five parameters ξa, ϕa, ξd, ϕd and α we can calculate
the transformation of the defender’s sword Gd and the
transformation for the point of contact Gc:

Gc = GaLz(ξa) ·Rz(ϕa) · Lx(ra)

Gd = Gc · Lx(rd) ·Rx(α) ·Rz(π−ϕd) · Lz(−zd).

Rx denotes a rotation around the x-axis and Lx a translation
along the x-axis and ra and rd are the radii of the two swords.

We compute the end effector pose, Te, from the pose of



the defender’s sword:

Ge = Gd · Lz(− ld
2

) ·Ry(
π

2
) · Lz(−0.1)

ld is the length of the defender’s sword. Inverse kinematics
(IK) is applied to determine whether an end-effector config-
uration can be reached and calculate the arm configuration.
Due to redundant joints there may be multiple solutions. This
ambiguity is resolved by a parameter φ, which specifies the
redundant degree of freedom by the swivel angle of the arm.
IK enforces joint limits but not collisions.

2) Evaluating contact states: In section V-C.1 we de-
scribed how to find the space of valid blocks. In order to
find locally optimal blocks, we must now evaluate the con-
figuration and velocity of both, the attacker’s and defender’s
swords. The criteria for optimality is defined as follows:

1) Keep the attacker at a safe distance
2) Minimize impulse on the joints
3) Maximize contact velocity, i.e. hit the opponent hard
4) Maximize angle of swords
5) Maximize distance from point of collision to end of

sword
The cost function is a weighted sum of partial costs. Each
of the partial costs implements one of the given goals.

JD =
∑
i

wi · J i
D

The first evaluation function approximates the motion of the
attacker before and after the contact with linear rays and
then calculates the minimal distance from these rays to the
defender. The partial cost is the reciprocal of the minimal
distance. This quantity grows to infinity when the distance
approaches zero. Such a measure is necessary because we
cannot accept any block where the distance to the attacker is
close to zero even if all other partial costs favor that block.

J1
D =

1

dmin

Notice that we do not we do not check for self-collision
explicitly. However, typical optimal configurations are free
of self-collision due to the evaluation (1) since maintaining
a safe distance to the attacker requires a stretched-out arm.
Fig. 5(b) shows the optimal configuration of the arm for
a particular attack without considering the distance to the
attacker. The configuration is in collision. When taking the
distance of the attacker into account as shown in Fig. 5(a)
the block is visually more stable and the defender is not in
self-collision.

Evaluation (2) is the Euclidean norm of the vector of
impulses around the joints caused by the impulse applied
to the defender’s arm by the attacker at the point of contact.
When calculating the impulse around one joint, we assume
all other joints are fixed.

J2
D = ||I||2 with Ii = ξi · ((pc − pi)× ((va · nc)nc))

where pi is a point on and ξi is the direction of the ith joint
axis. pc is the point of contact, nc is the normal direction of
the contact and va is the velocity of the attacker.

(2) favors configurations in which the contact point is close
to and/or aligned with the joint axes. It also favors hitting the
opponent from the side because only the part of the attacker’s
velocity normal to the contact is creating impulses on the
joints. Fig. 5(c) shows that when not taking the impulses into
account, the contact point is further away from the joints and
the joints are not aligned in a way to reduce the impulses
around the joint axes.

Evaluation (3) weighs configurations that have a large
contact velocity between the two swords while meeting joint
velocity limits.

J3
D = −vc with vc = viξi · ((pc − pi)× (−nc)) =

dpc
dq

v

dpc

dq is the Jacobian for the contact point pc at the arm
configuration q.

Evaluations (4) and (5) lead to blocks that are more robust
and less sensitive to controller error. The most expensive
configurations for (4) have swords parallel to each other and
those for (5) have swords that are touching at the tip. In both
cases, minor controller errors would lead to the swords not
making contact at all. We use these evaluation metrics to
ensure that the swords make broad area contact that would
still occur even if the swords do not precisely achieve the
expected states.

J4
D = (|α| − π

2
)2

J5
D = ξ2a + ξ2d

Fig. 5(d) and 5(e) shows that blocks appear more natural
with metrics (4) and (5). As noted earlier, we are using
different evaluation functions to retrieve different blocks to
a particular attack. These different evaluation functions are
structurally the same but use different weight vectors w.

In our experiments, we generated two blocks for each
attack. One block was retrieved using a weight vector such
that contact velocity was considered. Joint velocities were set
to their positive or negative limits. The second block did not
consider contact velocities (w3 = 0). Joint velocities were
set to zero.

3) Contact Optimization: In order to select the optimal
blocks according to Section V-C.2 in the 7-dimensional pa-
rameters space, we applied the stochastic method of particle
swarm optimization (PSO) [14], [15]. PSO is a population-
based method for global nonlinear optimization. Its main
advantages are the simplicity in implementation and perfor-
mance on problems with numerous local minima. Since it is
a stochastic method, it does not require the calculation of a
gradient. In our experiments we ran 200 iterations on 200
particles. Optimizing for each block required approximately
one minute.

D. Defender motion

Section V-C.3 calculated optimal blocks. However, it did not
take into account the feasibility or the cost of achieving
the blocking configuration. In section III-A we introduced
a controller κ for the defender, which defines a trajectory
given a start state y0, goal state y1 and a time T . We now
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Fig. 5: Optimal blocks are worse when leaving out one of the partial costs.

define this controller for the sword-fighting implementation.
The start state corresponds to the current block and the goal
state to the next block. The motion needs to meet velocity
and acceleration limits for the joints and reach the new block
at the given time. The time available consists of the time the
attacker needs to move back to start the next attack and the
point in time within the attack when the contact occurs. The
contact point, in turn, depends on the next block chosen by
the defender.

We neglect mass and inertia and assume that torque maps
linearly to acceleration. We then search for the motion that
requires the minimal amount of physical work.

Since we do not consider dynamics, we can plan a motion
for each joint individually. For each joint we have start and
goal angles and velocities given. We have to find a motion
that connects the two states while meeting the velocity and
acceleration limits. To reach this, we apply a variant of
trapezoidal velocity profiles. There are three stages: during
the first and third stages we accelerate or decelerate at
the acceleration limit. During the second stage acceleration
is zero. In standard trapezoidal profiles the start and goal
velocities are zero. However, in our case both the first and
second stage might be either acceleration, deceleration or
mixed in the case that the velocity passes through zero. The
constant velocity during the second stage might be directed in
the opposite direction to the goal to achieve the goal velocity.

E. Cost function

The overall cost is the difference between the defender’s and
the attacker’s cost. However, we do not explicitly calculate
a cost for the attacker. Hence any increase in the defender’s
cost benefits the attacker.

The defender’s cost for an action consists of the cost for
the following block plus the cost for the block motion. We
described different cost functions for blocks in section V-C.2.
One of these assigns a cost to all blocks, even if the block
was generated using a different cost function. We also ascribe
a cost to each transition motion. The cost for a transition is
the squared maximum velocity or infinite if the motion is
not possible within the velocity and acceleration limits.

F. Results

The optimal policy calculated by the value iteration tells us
the best block for each pair of previous block and current
attack. This is visualized in Fig. 6. All blocks are shown as
nodes. Five edges emanate from each block. Each one of the
edges is directed to the optimal block for one attack. Two of
the blocks, shown in grey, are never reached from any other
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Fig. 6: Sample optimal policy computed for a given attack duration.

block, because for attacks 1 and 2 the best block is always
the same independent of the previous block. For the other 3
attacks the best block depends on the previous block. Note
that with the exception of the two blocks shown in grey, the
graph is strongly connected. I.e. for each pair of blocks, there
exists a sequence of attacks that brings us from one block
to the other.

Fig. 7 shows the same set of blocks as Fig. 6. Each column
shows one attack with two different defense motions. The
upper row shows blocks that try to achieve a high contact
velocity and the bottom row shows blocks where the arm is
at rest.

There are 10 different blocks (i.e. primary states), which
we can currently be in, and 5 possible attacks, which the
attacker could choose next. This results in 50 intermediate
states, in each of which the defender has to make a decision
between two blocks. Not all of the blocks might be feasible
within velocity and time constraints. In each of the 50
intermediate states the situation is one of the 5 following
cases:

1) both blocks are feasible, block 1 is the better one
2) both blocks are feasible, block 2 is the better one
3) block 1 is infeasible, block 2 is feasible
4) block 2 is infeasible, block 1 is infeasible
5) both blocks are infeasible
If the attacker moves faster or the defender slower, it is

more likely that one of the blocks becomes infeasible. Table
II shows how often each case appears for different attacker
speeds. With decreasing attack duration, increasing attack
speed, more blocks become infeasible. If both blocks are
infeasible for any of the five attacks, the current primary state
is a death state because the attacker can choose the attack
such that the defender has no options. For an attack duration
of 1 s and 2 s all 10 blocks are death states, i. e. there exists
an attack such that all blocks for that attack are impossible
to reach from the current block. For an attack duration of



Fig. 7: Visualizations of types of blocks performed by the defender.

Attack
duration

Feasible Defense
Death
States

Time to
Death

Both 2 1 None
Optimal Defense

1 2
6 s 30 20 0 0 0 0 ∞
5 s 37 13 0 0 0 0 ∞
4 s 28 21 1 0 0 0 ∞

3.2 s 1 33 8 5 3 3 0 / ∞
3 s 4 19 11 12 4 3 0 / 1
2 s 0 1 11 1 37 10 0
1 s 0 0 5 0 45 10 0

TABLE II: Defender’s options for different-strength attackers

both 3 s and 3.2 s there are 3 death states. However, there
is a difference: the time to death, i. e. the minimum possible
number of moves the attacker needs to drive the defender
from a certain state into a death state. With an attack duration
of 3 s we are either already in a death state or cannot avoid
transitioning to one during the next move. With an attack
duration of 3.2 s the defender can always avoid death states
if it does not start in one.

Fig. 6 and Table II show that both response functions
are being used. It is not always the same one that becomes
infeasible or is the optimal one. This result demonstrates the
functionality of merging suboptimal local solutions into one
global solution. A block where the defender is in rest may
appear unreasonable, yet it is applied over a block with a high
velocity in cases where faster velocities cannot be achieved.

The accompanying video shows the optimized combat.

VI. CONCLUSION

We presented a model for interaction of a robot with an
adversary involving hybrid dynamics. The model is based
on discretization in order to retrieve finite sets of possible
actions for the attacker and defender. Motions are split into
two parts, the actual attack or response and a transition
motion. We validated the presented model model by applying
it to simulated robot sword fighting.

Future work includes handling unknown attacks. This
could be achieved by making use of a precalculated response
to a similar known attack.
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