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Abstract— We present hierarchical rejection sampling (HRS)
to improve the efficiency of asymptotically optimal sampling-
based planners for high-dimensional problems with differential
constraints. Pruning nodes and rejecting samples that cannot
improve the currently best solution have been shown to improve
performance for certain problems. We show that in high-
dimensional domains this improvement can be so large that
rejecting samples becomes the bottleneck of the algorithm
because almost all samples are rejected. This contradicts
general wisdom that collision checking is always the bottleneck
of sampling-based planners.

Only samples in the informed subset of the state space
can potentially improve the current solution. For systems
without differential constraints the informed subset forms an
ellipsoid, which can be parameterized and sampled directly.
For systems with differential constraints the informed subset
is more complicated and no such direct sampling methods
exist. HRS improves the efficiency of finding samples within
the informed subset without parameterizing it explicitly. Thus,
it can also be applied to systems with differential constraints
for which a steering method is available. In our experiments
we demonstrate efficiency improvements of an RRT* planner
of up to two orders of magnitude.

I. INTRODUCTION

Sampling-based planners have been successfully applied to
difficult, high-dimensional motion planning problems. One
popular example is the Rapidly Exploring Random Tree
(RRT) [1]. While RRTs are probabilistically complete for
problems considered here, they do not return an optimal
solution. Karaman and Frazzoli [2] introduced asymptotically
optimal sampling-based algorithms, including PRM*, RRG*
and RRT*. Others have proposed RRT# [3], FMT* [4],
BIT* [5]. All of these algorithms optimally connect nodes
within a given distance of each other. This distance shrinks
as the number of nodes increases, avoiding large numbers
of connection attempts and improving the efficiency of the
algorithms.

In order to achieve a near-optimal solution, all these
planners need to densely fill the state space with samples.
However, in high-dimensional spaces this is very inefficient.
In order to improve the efficiency and not fill the whole state
space with samples, additional information can be used to fill
only those parts of the state space that can improve the current
solution. Following [6], we call this the informed subset of
the state space. Assume we can calculate a lower bound on
the optimal cost to move from the start through a sample
and to the goal. If this lower bound is larger than the current
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Fig. 1. Illustration of hierarchical rejection sampling using a simple example
(2 dimensions, no differential constraints): (a) current solution trajectory
and informed subset, (b) standard rejection sampling, (c) - (e) hierarchical
rejection sampling (HRS).

solution, the sample cannot improve the current solution, is
not part of the informed subset and can be ignored.

For systems without differential constraints and the Eu-
clidean distance as cost function, the informed subset is
ellipsoidal [7]. This ellipsoidal subset can be parameterized
and sampled directly [6]. For systems with differential
constraints, however, the informed subset is not ellipsoidal but
more complex. To date no methods to sample directly within
that space exist. Instead, samples within the informed subset
can be found using rejection sampling, i.e. sampling the full
state space and rejecting those samples that cannot improve
the current solution. However, especially in high-dimensional
spaces, the informed subset might only be a tiny fraction of
the whole state space. In this case most samples get rejected
and rejection sampling is very slow. In our experiments up
to 99.99% of all samples get rejected. This can lead to a
sampling-based planner spending most of its time rejection
sampling.

To improve the efficiency of informed sampling without
the need to explicitly parameterize the informed subset,
we introduce hierarchical rejection sampling (HRS). HRS
hierarchically combines partial samples into larger samples,
making accept/reject decisions at every level. When a partial
sample is rejected, only the partial information needs to be
resampled.

We demonstrate the benefit of HRS by using it in combi-



nation with an RRT* planner. We plan acceleration-limited
trajectories for robot arms with up to 7 DOFs. The RRT*
planner plans in the 14-dimensional state space consisting
of joint positions and velocities and uses a steering method.
HRS speeds up the convergence of the RRT* planner by up to
two orders of magnitude. The largest efficiency improvements
are observed for close-to-optimal solutions.

HRS is primarily intended for systems with an available
steering method, which can efficiently and optimally solve
the boundary-value problem and, thus, connect any two
states in the absence of obstacles. Such steering methods
are for example available for double integrators, Dubins
cars, Reeds-Shepp cars and linear-quadratic problems. This
steering method can be used to calculate a lower bound on
cost and, thus, to reject samples. We also assume that it is
possible to apply the steering method to partial state samples
to obtain a lower bound on cost. We expect the latter to be a
weak assumption. We are not aware of any steering method
that cannot not be applied to partial samples. However, the
tightness of the obtained bound and, thus, the effectiveness
of HRS might vary for different systems.

II. RELATED WORK

A. Informed Graph Pruning

Informed graph pruning [8] is closely related to informed
sampling. But instead of rejecting samples or areas of the
state space, it rejects nodes in the graph. Thus, it cannot
reject samples until they have been added to the graph. In
contrast, informed sampling can reject samples before adding
them to the graph. Informed graph pruning uses the graph
as additional information. Instead of using a lower bound
on the optimal cost-to-come, it uses the cost-to-come along
the graph. This is advantageous because the graph is more
informed as it considers obstacles. However, the cost along
the graph gives an upper bound on the optimal cost-to-come
instead of a lower bound. Thus, there is a chance that pruned
nodes could have contributed to the optimal solution once
the graph becomes closer to optimal.

The samples rejected by informed sampling are a subset
of those rejected by informed graph pruning. Therefore,
hierarchical rejection sampling can be combined with graph
pruning. The benefit of hierarchical rejection sampling is
actually larger when also employing graph pruning. This
is because graph pruning reduces the number of collision
checks, making it more likely that rejection sampling instead
of collision checking becomes the bottleneck of the algorithm.
In out experiments in Sec. VIII we evaluate the performance
gain of hierarchical rejection sampling with and without
employing informed graph pruning.

B. Biased Sampling

There has been a lot of work on improving the efficiency of
sampling-based planners through adaption of the sampling
distribution. The distribution has been biased toward the
current solution trajectory [9, 10] or areas of the state space
with a high difficulty, because of low manipulability [11] or
narrow passages [12, 13].

Unlike informed sampling, sample biasing still accepts
samples that cannot improve the solution. These sample
schemes might lead to better or worse performance. They
include a parameter to control the strength of the bias, which
affects performance and has to be tuned. Informed sampling
in contrast is parameter-free. It might not always lead to
better performance, but it never causes significantly worse
performance. Biased sampling schemes that uniformly sample
the state space and then reject certain samples [9–11] can
be combined with hierarchical rejection sampling. Sampling
schemes that use a completely different method to generate
samples [12, 13] cannot.

III. BACKGROUND: INFORMED SAMPLING

We want to find the optimal trajectory from the start state xstart
to the goal state xgoal according to some given cost function.
The trajectory must completely lie in the obstacle-free space
Xfree and potentially satisfy differential constraints of the
form ẋ = f(x,u) with u ∈ U . Note that for a more concise
presentation we assume a single goal state. The approach
can easily be extended to a finite set of goal states. In our
experiments we actually have multiple goal states.

Let cbest be the cost of the current solution or infinite if
no solution has been found yet. Informed sampling rejects
samples that cannot improve cbest.

Let c∗(x1,x2) be the cost of the optimal trajectory from
x1 to x2. A sample can only improve the current solution if
the cost of the optimal solution trajectory through x is less
than cbest, i. e.

c∗(xstart,x) + c∗(x,xgoal) < cbest (1)

c∗(x1,x2) is generally unknown. Instead we use a heuristic
estimate c(x1,x2). c is called admissible if

∀x1,x2 ∈ X : c(x1,x2) ≤ c∗(x1,x2) (2)

Informed sampling uses such an admissible heuristic
estimate to restrict samples to the subset of the state space
that can potentially improve the current solution. Following
[6], we call this the informed subset of the state space. The
set includes all states x satisfying

c(xstart,x) + c(x,xgoal) < cbest (3)

Because of Eq. 2, Eq. 1 implies Eq. 3, i.e. the informed
subset includes all states that can improve the current solution.

If a steering method is available, the cost of the trajectory
returned by the steering method can be used as the heuristic
cost estimate. The cost returned by the steering method is a
lower bound on the optimal cost, since the steering method
returns the optimal trajectory for the relaxed problem without
obstacles.

IV. A SIMPLE EXAMPLE

Fig. 1 uses a very simple example to demonstrate hierarchical
rejection sampling and why it leads to more efficient sam-
pling. The example uses a two-dimensional problem without
differential constraints. Note that we use this simple example
only to visualize hierarchical rejection sampling. Hierarchical
rejection sampling is not needed for this problem, because the
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Fig. 2. Hierarchical rejection sampling: The sample gets built bottom-up along a tree structure. Whenever a node rejects part of a state, only its subtree
gets resampled. Parts that have already been sampled are shown in gray. The active node is circled.

informed subset can be represented explicitly and sampled
directly.

Fig. 1(a) shows a planning problem with start and goal
states and obstacles. It also shows the current, suboptimal
solution trajectory. The white ellipse marks the informed
subset, in which a sample has to lie in order to be able to
improve the solution trajectory. The informed subset covers
1/8 of the state space. The axis-aligned bounding box around
it is a square and covers 1/4 of the state space.

Fig. 1(b) shows samples produced by standard rejection
sampling. Since the informed subset covers 1/8 of the whole
state space, we need on average 8 samples to find one
valid sample (shown in green). Since the state space is 2-
dimensional, these 8 samples consist of 16 scalar samples
(shown as lines).

Fig. 1(c)-(e) visualize hierarchical rejection sampling. In
Fig. 1(c) only the horizontal dimension is considered. There
are 4 partial, scalar samples shown. Even though only partial
samples are considered, 2 out of 4 samples can be rejected.
This is because no matter what the value of the vertical
dimension is, those partial samples can never result in a
full sample that lies within the informed subset. Fig. 1(c)
shows the same for the vertical dimension with 2 out of
4 samples being rejected. Fig. 1(e) combines the 4 partial,
scalar samples that were accepted in Fig. 1(c) and 1(d) into
2 full samples. Only one of the 2 full samples lies within
the informed subset. In Fig. 1(c) and 1(d) a total of 8 scalar
samples are generated.

In this simple example hierarchical rejection sampling
generates half as many scalar samples as standard rejection
sampling on average. Admittedly, this is not a large im-
provement. However, the improvement grows larger when
increasing the number of dimensions.

To illustrate the effect of a high-dimensional search space
imagine that, like in the 2-dimensional example above, the
current solution cost results in 50 % of all scalar samples
being rejected. Now, imagine the problem is 7-dimensional.

This results in a probability of
(
1
2

)7
or less than 1 %

that a complete 7-dimensional sample is accepted. That
means, on average, we need to generate more than 100 7-
dimensional samples to get one sample that can improve
the current solution. That is more than 700 scalar samples.
Hierarchical rejection sampling, in contrast, requires only 2
scalar samples on average per dimension. That is a total of
14 scalar samples, much less than 700. In reality, HRS does
not only make accept/reject decisions for partial scalar and
complete 7-dimensional samples, but also for partial 2-, 3-
or 4-dimensional samples. This further increases the benefit
of HRS.

V. ALGORITHM

Fig. 2 visualizes the hierarchical rejection sampling algorithm
using a 4-dimensional problem. At every node reject/accept
decisions are made based on partial state information. x[i]
represents the ith element of the state vector and x[i..j] the
segment from element i to j. Leaf nodes sample a single
dimension until a scalar sample is accepted. Interior nodes
combine two partial samples resulting in a larger partial
sample consisting of elements i to j. Interior nodes only
consider elements i - j for calculating a lower bound on
the cost of a trajectory through a sample and for making an
accept/reject decision. If the sample is rejected, the node’s
whole subtree gets resampled.

Algorithm 1 shows a recursive implementation of hierar-
chical rejection sampling. The parameters i and j specify
the currently considered segment x[i..j] of the state vector
x. The start state xstart, goal state xgoal and the cost cbest
of the best solution trajectory found so far are provided to
the HRS algorithm. The algorithm returns x, cstart and cgoal.
x is the state sample that is being generated. In a simple
implementation cstart and cgoal are lower bounds on the cost
to move from the start state to the sample and from the
sample to the goal state respectively. In a more efficient
implementation cstart and cgoal might be more complex data



Algorithm 1: HRS(i, j,x)

1 if i = j then
2 repeat
3 x[i]← SampleLeaf(i);
4 cstart ← CalculateLeaf(xstart,x, i);
5 cgoal ← CalculateLeaf(x,xgoal, i);
6 n[2i]← n[2i] + 1;
7 until Cost(cstart) + Cost(cgoal) < cbest;
8 else
9 m← b i+j

2 c;
10 repeat
11 (x, cstart, cgoal)← HRS(i,m,x);
12 (x, c′start, c

′
goal)← HRS(m+1, j,x);

13 cstart ← Combine(xstart,x, i,m, j, cstart, c
′
start);

14 cgoal ← Combine(x,xgoal, i,m, j, cgoal, c
′
goal);

15 n[2m+1]← n[2m+1] + 1;
16 until Cost(cstart) + Cost(cgoal) < cbest;
17 return (x, cstart, cgoal);

structures containing additional cached results of intermediate
calculations.

Lines 9 - 16 handle interior nodes, while lines 2 - 7 handle
leaf nodes. Interior nodes divide the considered state vector
segment in two parts. Line 9 calculates the split point. Lines
11 and 12 recursively call the algorithm to generate two
partial samples. Using only the partial information available
from dimensions i - j, lines 13 and 14 calculate a lower
bound on the costs to move from the start to the sample and
from the sample to the goal. If the sum of the lower bounds
is larger than cbest, the sample is rejected and the process is
repeated. The process for leaf nodes is similar. But instead
of recursively sampling two partial samples, it just samples
a scalar in line 3.

The algorithm shown here also updates a vector n of a size
equal to the number of tree nodes in the sampling hierarchy:
2d− 1. Each element of n is associated with one node in the
sampling hierarchy and stores the number of samples drawn
by that node from its children. We call these the numbers of
explicit samples. The numbers of explicit samples are updated
in lines 6 and 15. These two lines are only necessary if one
wants to keep track of the sample density and can otherwise
be omitted. For more details on the use of n see Sec. VII.

VI. EXAMPLE IMPLEMENTATIONS

In this section we provide two example implementations of
hierarchical rejection sampling by providing implementations
of the primitive procedures used by HRS in Algorithm 1.

A. Geometric

Algorithms 2, 3 and 4 provide an example implementation of
HRS for geometric problems with a Euclidean cost function.
Here cstart and cgoal are scalars. To reduce the number of
computations, cstart and cgoal are not the costs but the squared
costs. However, HRS still incurs a small overhead calculating
the Euclidean distance since the square root has to be
calculated multiple times: once for each partial sample.

Algorithm 2: CalculateLeaf Geometric(x1,x2, i)

1 return (x1[i]− x2[i])
2;

Algorithm 3: Combine Geometric(x1,x2, i,m, j, c, c′)

1 return c+ c′;

Algorithm 4: Cost Geometric(c)

1 return
√
c;

B. Double Integrators Minimum Time

Algorithms 5, 6 and 7 provide an example implementation
for the double-integrators minimum-time (DIMT) problem
[14]. The system is a set of double integrators with the
state consisting of joint positions and velocities and the
control input of accelerations. Velocities and accelerations
are bounded. Cost is defined as the minimum time required
to move between two states.

For a simpler presentation we so far assumed leaf nodes
to sample a scalar. However, the algorithm can easily be
adapted to leaf nodes sampling a higher-dimensional sample.
In our implementation of HRS for the DIMT problem leaf
nodes sample both, position and velocity of a single joint.
Also, i and j do not refer to a range of vector elements but
a range of joints, each represented by two elements of the
state vector.

Here, cstart and cgoal each represent a set of feasible times to
move between two states. Algorithm 5 calculates the set of all
feasible times at which a single double integrator can reach
x2. We represent this set as a minimum time plus optionally
an infeasible time interval. Algorithm 6 combines two partial
samples by calculating the intersection of the two feasible
sets. HRS does not cause a lot of overhead here, because even
for normal sampling we would need to calculate the minimum
time and infeasible time intervals for each individual joint
and then find the minimum time feasible for all joints. For
more information on the DIMT problem and how to calculate
the minimum times and infeasible intervals see [14].

Algorithm 5: CalculateLeaf DIMT(x1,x2, i)

1 tmin ← MinimumTime(x1[i],x2[i]);
2 Tinfeasible ← InfeasibleInterval(x1[i],x2[i]);
3 return {t : t ≥ tmin} \ Tinfeasible;

Algorithm 6: Combine DIMT(x1,x2, i,m, j, c, c′)

1 return c ∩ c′;

Algorithm 7: Cost DIMT(c)

1 return min c;
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VII. IMPLICIT SAMPLES

This section introduces implicit samples as a concept to
measure sample density inside the informed subset. Unfortu-
nately we cannot measure sample density inside the informed
subset directly because we do not know its volume. Instead,
we estimate the number of samples that would have been
necessary to cover the full state space with the same sample
density as the informed subset. We call this the number of
implicit samples.

The sample density is necessary when using certain
algorithms, e.g. the standard RRT*, which uses the sample
density to control the connection threshold. We chose not
to shrink the connection threshold in our experiments and
thus do not need this information. Nonetheless, this section
makes clear that HRS can be used in combination with such
algorithms. In Sec. VIII-C we use the number of implicit
samples to explain why HRS finds better solutions faster.

During the sampling process we collect information that
allows us to calculate the number of implicit samples
generated since the last time the informed subset changed,
i.e. the solution cost decreased. The total number of implicit
samples is the sum of the implicit samples generated during
each phase of constant solution cost. The rest of this section
only considers the number of implicit samples since the last
solution cost decrease and thus assumes the informed subset
does not change.

For each node in the sampling hierarchy that samples
elements i to j, we store the number ni,j of explicit samples it
has generated. This means the number of times it has queried
its two children for a sample and made an accept/reject
decision. This is also the number of times its two children
have accepted a sample. Note that both children accept the
same number of samples, because they both get queried the
same number of times for a sample. This is visualized in
Fig. 3.

We can also assign a number n̂i,j of implicit samples to
each node. This is the number of samples that would have
been required to achieve the same number of accepted partial

samples x[i..j] with standard rejection sampling. The number
of implicit samples mentioned in the first paragraph of this
section is the number of implicit samples of the root node.

The numbers n̂i,j do not need to be stored since they
can be calculated from the numbers of explicit samples
ni,j of all nodes. The number n̂i,j of implicit samples of
a node can be calculated recursively from the number ni,j

of explicit samples and the numbers n̂i,m and n̂m+1, j of
implicit samples of its child nodes.

For both child nodes we can calculate the probability that
one accepts an implicit sample. These probabilities pi,m
and pm+1, j are estimated from the number of accepted and
implicit samples seen so far as:

pi,m =
ni,j

n̂i,m
and pm+1, j =

ni,j

n̂m+1, j
(4)

where m = b i+j
2 c. The number n̂i,j of implicit samples of

the current node is then given as the number of times this
node queried its child nodes for a sample divided by the
probability that an implicit sample is accepted by both child
nodes:

n̂i,j =
ni,j

pi,m · pm+1, j
(5)

Combining Eq. 4 and 5 we obtain

n̂i,j =
n̂i,m · n̂m+1, j

ni,j
(6)

For leaf nodes with i = j the number of implicit samples
equals the number of explicit ones.

n̂i,i = ni,i (7)

Combining the recursive formula with the base case for leaf
nodes, we can write the number of implicit samples of the
root node in closed form.

n̂0,d−1 =

∏
x[i] is leaf node

ni,i∏
x[i..j] is interior node

ni,j
(8)

To store the values of ni,j we can flatten the two indices i
and j into a single one: the index of the node is the in-order
traversal of the tree, i.e.

For i 6= j : ni,j ≡ n[2m+ 1] (9)
For i = j : ni,j ≡ n[2i] (10)

with m = b i+j
2 c. Eq. 8 giving the total number of implicit

samples can then be written as

n̂0,d−1 =

d−1∏
k=0

n[2k]

d−2∏
k=0

n[2k + 1]

(11)



Fig. 4. Hammering: Solution trajectory after 60 s of computation time

(a) 0.0 s (b) 1.4 s (c) 2.8 s (d) 4.2 s (e) 4.4 s

Fig. 5. Batting: Solution trajectory after 60 s of computation time

Fig. 6. Pick and place: Solution trajectory after 60 s of computation time

VIII. EXPERIMENTS

A. RRT* Algorithm

To evaluate HRS we apply it to an RRT* algorithm [2] with
a steering method. We deviate from the standard RRT* in
two ways. First, we grow the tree all the way to the sampled
state instead of making a small step toward it, since this is
more efficient in high-dimensional spaces. Second, we do not
shrink the connection threshold for rewiring as the number of
tree nodes increases. Instead, we use an infinite connection
threshold and attempt to rewire a new node to and from all
nodes in the tree.

We use an infinite connection threshold because the
standard geometric connection threshold [2] only guaran-
tees asymptotic optimality for systems without differential
constraints. An infinite connection threshold might be less
efficient, but guarantees asymptotic optimality. Using a more
efficient connection threshold would only increase the positive
effect of HRS. Karaman and Frazzoli also presented a
kinodynamic RRT* [15]. However, their paper leaves some
details unexplained. For example it is unclear how to choose
the connection threshold such that the neighborhood contains
a ball of a given size. Other authors using the kinodynamic
RRT* seem to have similar problems as their papers deviate
from [15] without mentioning or explaining it. [16] and [17]
use the geometric connection threshold for systems with
differential constraints. This results in asymptotic optimality
not being guaranteed. Similar to this paper [18] uses a non-
shrinking infinite or constant finite connection threshold.

B. Example Problems

We evaluate our planner on three example problems, which are
described below and shown in Fig. Fig. 4 - 6. All problems use
a robot arm where each joint is modeled as a double integrator
as described in Sec VI-B. HRS relies on an ordering of the
joints. Since we do not expect the ordering of the different
joints to have a major effect, we just use the physical ordering
of the joints within the arm. Table I shows parameters of the
problems. All problems assume goal states to be given in
joint space. We automatically generate a set of joint-space
goals from a given workspace goal. This conversion is not
part of the algorithms and evaluation presented in this paper.

1) Problem 1: Hammering: A simulated 7-DOF robot arm
is given the task to hit a nail at a given velocity while avoiding
an obstacle. Because of the required non-zero goal velocity,
the problem cannot be solved by a geometric planner. The
state space, consisting of joint positions and velocities, is
14-dimensional. To the best of our knowledge the highest-
dimensional space a kinodynamic RRT* has been applied to
before is 10-dimensional [18].

TABLE I
PARAMETERS OF THE EXAMPLE PROBLEMS

DOF / goal end-eff. vel. accel.
task dimensions states goal vel. limit limit

hammering 7 / 14 100 0.6 m/s 90 ◦/s 45 ◦/s2

batting 5 / 10 50 5.0 m/s 90 ◦/s 60 ◦/s2

pick and place 7 / 14 2 0.0 m/s 90 ◦/s 45 ◦/s2



2) Problem 2: Batting: Unlike the first problem, the second
example problem involves a real robot. We use a KUKA KR
210 robot arm. Again, the goal is to hit an object, a ball in
this case, at a velocity of 5 m/s. A stack of boxes is placed
between the robot and the ball such that the shortest trajectory
is in collision and the robot needs to plan around the obstacle.
While the robot has 6 DOF, we only make use of 5 of them.
Thus, the planning problem has 10 dimensions.

3) Problem 3: Pick and Place: While the previous two
example problems involve non-zero goal velocities, in this
problem, both, start and goal velocity are zero, which is
typical for pick-and-place operations. The robot has to move
a box through two vertical obstacles. There are two goal
states, which are almost identical. Only the first joint differs
by 360 degrees.

C. Results

Below we evaluate the convergence of the RRT* algorithm
when using HRS in comparison to using uninformed sampling
and standard rejection sampling. Uninformed sampling does
not reject any samples. Standard rejection sampling samples
a complete state and then makes a accept/reject decision.
For a fair comparison we implemented standard rejection
sampling as efficiently as possible. Even standard rejection
sampling might make reject decisions early before having
finished calculating the lower bound on cost. To do that
it passes the current solution cost to the steering method
to allow the steering method to abort the calculations as
soon as the current solution cost is exceeded. However,
unlike HRS, standard rejection sampling always rejects and
resamples the complete sample. We compare the performance
of standard and hierarchical rejection sampling with and
without additional graph pruning. All results shown below
are averages over 100 runs on a single core of an Intel Xeon
E5-1620 CPU (3.6 GHz, released 2012). The graphs also
show standard deviations as vertical bars.

Fig. 7 shows the convergence of the RRT* algorithm for the
three example problems. While informed standard rejection
sampling improves over uninformed sampling, HRS improves
efficiency even further, leading to the planner finding lower-
cost solution trajectories faster. This is the case with or
without graph pruning. For the hammering and pick-and-
place problems the improvement is significant, while for the
lower-dimensional batting problem the improvement is small.

To measure the efficiency improvement, in Table II we
compare the average computation time required by different
sampling strategies to achieve the same solution cost. The
efficiency gain factor is the quotient of the time required by
standard rejection sampling and by HRS. The improvement
grows larger as the solution cost shrinks, since more and
more samples are rejected and a larger and larger fraction of
time is spent sampling. HRS improves efficiency by up to
two orders of magnitude.

Table III gives additional insight into why HRS improves
performance. The number of implicit samples is directly
correlated to the solution cost. More implicit samples lead
to the state space being filled more densely and thus to a
better solution trajectory. While standard rejection sampling

TABLE II
AVERAGE COMPUTATION TIME REQUIRED TO REACH GIVEN SOLUTION COSTS

without graph pruning with graph pruning

solu- un- eff. eff.

ta
sk tion informed rejection gain rejection gain

cost sampling sampling HRS factor sampling HRS factor

ha
m

m
er

in
g

7.0 s 22.4 s 0.9 s 1.0 s 0.9 0.5 s 0.5 s 0.9
6.5 s 176.9 s 1.3 s 1.5 s 0.9 0.7 s 0.7 s 1.0
6.0 s 2.6 s 2.3 s 1.1 1.6 s 1.2 s 1.4
5.5 s 23.3 s 5.3 s 4.4 21.4 s 3.5 s 6.0
5.2 s 216.2 s 12.5 s 17.3 206.3 s 9.8 s 21.0
5.0 s 1793.2 s 40.4 s 44.4 1797.1 s 32.7 s 55.0

ba
tti

ng

5.5 s 6.06 s 0.45 s 0.46 s 1.0 0.30 s 0.32 s 1.0
5.0 s 77.48 s 0.58 s 0.59 s 1.0 0.38 s 0.38 s 1.0
4.5 s 1.18 s 0.93 s 1.3 0.77 s 0.57 s 1.4

4.26 s 36.18 s 7.73 s 4.7 31.51 s 5.05 s 6.2

pi
ck

an
d

pl
ac

e 8.0 s 95.3 s 9.6 s 8.3 s 1.2 3.1 s 2.3 s 1.3
7.0 s 16.1 s 14.7 s 1.1 3.9 s 3.2 s 1.2
6.0 s 27.1 s 21.9 s 1.2 7.0 s 4.0 s 1.7
5.5 s 62.5 s 34.4 s 1.8 33.3 s 4.8 s 6.9
5.2 s 327.4 s 75.9 s 4.3 284.5 s 6.8 s 42.1
5.0 s 3059.0 s 354.4 s 8.6 2828.8 s 17.5 s 161.4

accepts fewer samples than uninformed sampling and thus can
generate more implicit samples in the same amount of time, it
creates a new bottleneck since the algorithm now spends most
of its time sampling. HRS reduces the amount of time spent
sampling and thus can create even more implicit samples in
the same amount of time. This also results in more accepted
samples and more nodes. The RRT* with HRS generates up
to 35 billion implicit samples in 60 seconds. I.e. the samples
fill the informed subset as densely as if we had sampled
35 billion samples in the whole state space. After applying
HRS, sampling is not the bottleneck anymore for the batting
and pick-and-place problems. However, for the hammering
problem it still is. Graph pruning reduces the time spent
collision checking. Therefore, a larger fraction of the time is
spent on sampling and the efficiency improvement of HRS
is larger when combined with graph pruning.

IX. CONCLUSION

We showed that applying standard rejection sampling to an
asymptotically optimal sampling-based planner can sometimes
cause rejection sampling to become the bottleneck of the
algorithm. We presented hierarchical rejection sampling
(HRS) to improve the efficiency of rejection sampling. Unlike
existing work, HRS does not require an explicit representation
of the informed subset and can thus also be applied to
systems with differential constraints. Using a system of double
integrators we demonstrated an efficiency improvement by
HRS of up to two orders of magnitude. Future work includes
evaluating HRS on more systems and a formal analysis
under what conditions HRS provides a significant efficiency
improvement.
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