
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012

Manipulation Planning with Soft Task Constraints

Tobias Kunz and Mike Stilman

Abstract— We present a randomized configuration space
planner that enforces soft workspace task constraints. A soft
task constraint allows an interval of feasible values while favor-
ing a given exact value. Previous work only allows for enforcing
an exact value or an interval without a specific preference.
Soft task constraints are a useful concept in everyday life.
For example when carrying a container of liquid we want to
keep it as close to the upright position as possible but want
to be able to tilt it slightly in order to avoid obstacles. This
paper introduces the necessary algorithms for handling such
constraints, including projection methods and useful represen-
tations of everyday constraints. Our algorithms are evaluated
on a series of simulated benchmark problems and shown to
yield significant improvement in constraint satisfaction.

I. INTRODUCTION

In this paper we introduce a randomized configuration space
planner that enforces soft task constraints. Hard constraints
divide configurations into feasible and infeasible ones. In
contrast, soft constraints also specify a preference within the
feasible region such as staying away from the boundary. In
everyday life, a container of liquid should be kept as upright
as possible to minimize the risk of spills. Yet, there might
be situations where we need to tilt the container slightly to
avoid an obstacle. A slight tilt is less likely to lead to a spill.

Examples of such problems, shown in Fig. 1, include
taking a milk container out of a fridge and filling a pitcher
with water under a faucet. When removing the pitcher from
underneath the faucet, the faucet might interfere and force
us to tilt the pitcher. The more we tilt, the less water we can
add without spilling. Even robot balance within a support
region is safer if the robot’s center of mass stays close to
the center of the region. We present a bidirectional RRT
planner [1] with a path shortener for problems with soft task
constraints. Although we use an RRT planner to demonstrate
the effectiveness of our strategy, it can also be applied to
other sampling-based planners such as PRM [2].

A. Related Work

First-order retraction was introduced in [3, 4] as a method to
project a configuration space sample onto a constraint man-
ifold induced by workspace task constraints. It was shown
that first-order retraction is more efficient than randomized
gradient descent (RGD) [5]. Task constraints are defined by
declaring the coordinates of a task frame as either constrained
or unconstrained. In [4] a translation or rotation around
a coordinate axis can only be fixed completely within ε
deviation. For the previous example this means we can only
constrain the container of liquid to stay upright. If there is

The authors are with the Center for Robotics and Intelligent Ma-
chines at the Georgia Institute of Technology, Atlanta, GA 30332, USA.
tobias@gatech.edu, mstilman@cc.gatech.edu

(a) Taking milk out of the fridge (b) Filling a pitcher with water

Fig. 1: Application examples of soft task constraints

no path satisfying this constraint, planning fails even if there
was a solution that requires a small tilt.

In [6], constraints are presented that allow for an interval
of values for translations and rotations. This means we
could allow the container to be tilted up to a maximum
angle. [6] also presents a task-constrained path shortening
method. However, intervals are still hard constraints. All
configurations satisfying the constraint are equally good with
no bias toward the center of the constraint. In fact there
is a bias toward the boundary of the constraint, since the
infeasible samples are projected toward the nearest constraint
boundary. This leads to the undesirable case where the robot
may keep a container close to the boundary limit.

The task-constrained planning methods introduced in [3,
4, 6] have been applied to various manipulation scenarios, e.
g. [7, 8]. In contrast, [9] samples and searches for nearest-
neighbors directly in task space in order to better guide the
RRT growth in very-high-dimensional configuration spaces.
The RRT is grown in configuration space toward the sample
using a projection method similar to the one introduced in
[3, 4]. [10] generalizes the constraint representation beyond
constraints on the end-effector motion along axes of the task
frame and applies it to humanoid whole-body motion plan-
ning. However, all these methods focus on hard constraints.

[11] improves the efficiency of constrained sampling by
sampling in the tangent-space of the constraint manifold
instead of the full configuration space. Samples are projected
back on the manifold if they are too far away. [12] does not
use projection at all but instead builds an atlas consisting
of charts that locally approximate the constraint manifold.
The atlas as an approximation of the constraint manifold
is then searched for a path. However, both [11] and [12]
are only applicable to exact constraints that are represented
by a constraint manifold. Neither of the two represents the
notion of getting as close as possible to the manifold while
accepting all configurations within a certain distance.

B. Contribution and Overview
We propose a projection method that projects a configuration
sample as close to the desired value of translation or rotation

1



as possible. Even when the optimal value cannot be reached,
we accept the projected sample if it is within the given
constraint limits. The robot holds the container of liquid
upright whenever it can and allows tilt when necessary to
find a solution. No existing algorithms achieve this behavior.

We also introduce a new representation for the rotation in
task coordinates, which is better suited to define a limit on the
angle between an object and a fixed axis, such as the vertical.
Finally, we present a conversion from task coordinate error to
task frame error that is simpler and numerically more stable
than the one proposed in [4].

Section II describes how we represent soft constraints.
Section III introduces our algorithm for creating soft-
constrained samples. Section IV describes the high-level
planning algorithm we use to demonstrate the effectiveness
of our soft-constrained sampling algorithm. In Section V
we present experimental results from running the planning
algorithm in two different scenarios.

II. CONSTRAINT REPRESENTATION

The homegeneous transform of frame b relative to a is

T a
b =

[
Ra

b tab
0 1

]
. (1)

The task constraint is given by defining limits on allowable
translations and rotations relative to the task frame. The
homogeneous transform T 0

t specifies the pose of the task
frame relative to the world frame. The task frame can be
stationary in the world, e. g. at a door hinge, or it can change
with the pose of the object. The pose of the object relative
to the task frame is given by

T t
obj = (T 0

t )−1T 0
obj (2)

The task constraint limits the displacement of the object from
the task frame. We use task coordinates to represent the
displacement of the object from the task frame. The choice
of these coordinates is task-specific. As we can only limit
task coordinates individually, the task coordinates have to be
chosen in such a way that they line up with what we want to
limit. Previous papers [4] and [6] use Cartesian coordinates
for translation and X-Y-Z Euler angles for rotation. We also
use Cartesian coordinates for translation but use a Z-Y-Z
Euler angle convention, which is better suited to represent
an angular displacement from one fixed axis.

Consider the case of constraining the tilt angle of a bottle
as shown in Figure 2a. The z-axis is pointing up. When
using the X-Y-Z Euler angles, we need to constrain the
rotations around both the x- and y-axes. But constraining
those 2 rotations does not lead to a consistent tilt angle
limit. Figure 2b shows the constraint boundary for a limit
of ±30◦ for both rotations. In contrast, when using Z-Y-Z
Euler angles, the angle of rotation around the y-axis equals
the tilt angle and can be easily limited as shown in Figure 2c.

Using Z-Y-Z Euler angles, φ, θ and ψ define the rotation
of the object relative to the task frame as follows.

Rt
obj = Rz(φ)Ry(θ)Rz(ψ) (3)

(a) bottle (b) X-Y-Z (c) Z-Y-Z

Fig. 2: Constraint bounds for different Euler representations

where Rx(φ) represents the rotation matrix for a rotation
around the x-axis by an angle of φ. Given a rotation
matrix we can calculate the task coordinates representing
the rotation as follows. Since we use a different Euler angle
convention, these equations differ from [4] and [6].

ψ = atan2(R3,2,−R3,1) (4)
θ = arccos(min(1,R3,3)) (5)
φ = atan2(R2,3,R1,3) (6)

with R = Rt
obj and Ri,j representing the value at row i

and column j of R. The minimum is taken here in order
to accommodate for numerical inaccuracies. The full task
deviation vector is given as

∆x =


ttobj
ψ
θ
φ

 (7)

Given any task coordinate representation consisting of n
coordinates (in our case n = 6), we can select the constrained
coordinates. We do so by defining a diagonal n×n constraint
selection matrix C. The ith diagonal element of C is 1 if
the ith task coordinate is constrained, otherwise it is 0. We
also define limits on the constrained task coordinates

∆xmin ≤ C∆x ≤∆xmax (8)

∆xmin ≤ 0 ≤∆xmax (9)

Without loss of generality, we assume that the favored value
for task coordinates is 0. In general, we could move the task
frame such that it is at 0. We term this value the center of
the constraint interval, even when it is not literally centered.

Note that we use both a constraint selection matrix C
and limit vectors ∆xmin and ∆xmax, while [4] only uses a
constraint selection matrix and [6] only uses limit vectors. [4]
does not need limit vectors because it only allows for exact
constraints. [6] does not need a selection matrix because
coordinates can be unconstrained by setting the limits to −∞
and∞. That does not work in our case, because even though
we might want to allow all possible values for a coordinate
we might still favor a specific value.

III. CONSTRAINED SAMPLING

We constrain a configuration by using a gradient-descent
method that repeatedly moves the configuration closer to
the constraint. The gradient is given as joint space error,
calculated as a local linear approaximation using the Jacobian
pseudo-inverse. Section III-A describes how to calculate the



joint space error. Section III-B describes how this informa-
tion is used to project a sample as close to the center of the
constraint interval as possible.

A. Calculating Joint Space Error

For a given robot configuration we calculate the pose of the
object, which is rigidly attached to the robot, using forward
kinematics. The pose of the object relative to the task frame
is then given by

T t
obj(q) = (T 0

t )−1T 0
obj(q) (10)

Using Eq. 4 - 7, we can get the task coordinate representation
∆x from T t

obj . The task error ∆xerr is easily calculated
by applying the constraint selection matrix C.

∆xerr(q) = C∆x(q) (11)

Given the task error ∆xerr, we want to move the robot
such that the error is reduced. The Jacobian J(q) gives a
mapping from joint space velocities to work space velocities
in the world frame. Like [4] and [6] we use the right pseudo-
inverse

J† = JT
(
JJT

)−1
(12)

of the Jacobian to map work space velocities into joint space
velocities. Since the task error is given relative to the task
frame we need to transform it into the world frame before
multiplying it with the Jacobian pseudo-inverse.

J†t (q) = J†(q)

[
R0

t 0
0 R0

t

]
(13)

The task-frame Jacobian pseudo-inverse still does not map
the task error into a joint space velocity that locally reduces
the task error in task coordinates. Because Euler angles are
applied sequentially, a rotation around one axis affects the
location of the axes of rotations applied before. Thus, in order
to reduce the task error locally, we need to rotate around
the current position of the rotation axes corresponding to
the Euler angles. In order to find these axes we multiply
each original Euler axis with rotation matrices represent-
ing the rotations applied afterwards. Thus, the vector of
instantaneous rotations around the task frame axes ω is
found by multiplying each instantaneous Euler angle by the
corresponding original axis relative to the task frame as well
as with the rotation matrices of the Euler rotations applied
afterwards.

ω = Rz(φ)Ry(θ)ẑψ +Rz(φ)ŷθ + ẑφ (14)

By collecting the factors in front of the Euler angles and
by adding the linear part, we get the transformation matrix

E−1 =

[
I3 0 0 0
0 ẑ Rz(φ)ŷ Rz(φ)Ry(θ)ẑ

]
(15)

=


I3 0 0 0
0 sin θ cosφ − sinφ 0
0 sin θ sinφ cosφ 0
0 cos θ 0 1

 (16)

Algorithm 1: NewConfig(qtarget, qnear, δ)

1 qstep ← qnear + min{δ, ||qtarget − qnear||} qtarget−qnear

||qtarget−qnear|| ;
2 qnew ← NULL; ∆xpreverr ←∞;
3 while qmin≤qstep≤qmax and CollisionFree(qnear, qstep)

do
4 ∆x← ∆x(qstep);
5 ∆xerr ← C∆x;
6 if ∆xerr ≥ ∆xpreverr then break;
7 ∆xpreverr ← ∆xerr;
8 qnew ← qstep;
9 if ∆xerr ≤ ε then break;

10 ∆qerr ← J†(qstep)

[
R0

t 0
0 R0

t

]
E−1(∆x) ∆xerr;

11 qstep ← qstep −min{δ, ||∆qerr||} ∆qerr
||∆qerr|| ;

12 end
13 if ∆xmin − ε ≤ ∆xerr ≤ ∆xmax + ε and(
||qtarget − qnew||+ ε < ||qtarget − qnear|| or
||∆xerr|| < ||C∆x(qnear)||

)
then

14 return qnew;
15 else
16 return NULL;
17 end

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

qtarget

qnearqnew

0 ¢xmax

Fig. 3: Visualization of Algorithm 1

The Jacobian relative to the task coordinates of the current
pose of the object is given by

J†∆x(q) = J†t (q)E−1(∆x(q)) (17)

The transformation matrix is called E−1 rather than E
in order to be consistent with the naming in [4]. In [4]
the task coordinate Jacobian pseudo-inverse is defined as
J†∆x(q) = (E(q)Jt(q))

†. This is mathematically the same
as our definition but has two drawbacks. First, the derivation
is more complicated because E is defined as (E−1)−1.
Second, (E−1)−1 as shown in the appendix of [4] is not
well defined as it contains fractions with a sine or cosine as
denominator. The denominator might become zero. In our
case this happens at the favored upright object pose.

Combining Eq. 13 and 17, the joint error ∆qerr based on
a local approximation is given as

∆qerr(q) = J†(q)

[
R0

t 0
0 R0

t

]
E−1(∆x(q)) ∆xerr(q) (18)

Eq. 18 is found in line 10 of Algorithm 1.



Algorithm 2: BiRRT(q1, q2, δ, nmax)

1 T1.AddNode(q1, NULL);T2.AddNode(q2, NULL);
2 a← 1; b← 2;
3 while Size(T1) + Size(T2) < nmax do
4 qrand ← RandomConfig();
5 qanear ← NearestNeighbor(Ta, qrand);
6 if qanew ← NewConfig(qrand, q

a
near) then

7 Ta.AddNode(q
a
new, q

a
near);

8 qbnear ← NearestNeighbor(Tb, qanew);
9 while qbnew ← NewConfig(qanew, q

b
near, δ) do

10 if qanew = qbnew then
11 return ExtractPath(T1, T2);
12 end
13 Tb.AddNode(q

b
new, q

b
near);

14 qbnear ← qbnew;
15 end
16 end
17 Swap(a, b);
18 end
19 return NULL;

B. Projection Toward the Constraint
Instantaneous joint-space error is used to move the robot
closer to the task constraint. [4] [6] subtract the whole joint
space error from the current configuration. [4] moves all
the way to the center of the constraint while [6] moves to
the boundary of the constraint. We move to the center of
the constraint but in small steps. Even inside the constraint
boundaries we continue toward the center until we hit an
obstacle. This is what makes our constraint enforcement soft.

In line 11 of Algorithm 1 the configuration is moved
toward the constraint by a small step δ. We repeat this until
either we hit an obstacle, reach a joint limit or reach the
center of the constraint. We also abort if a step does not
get us closer to the task constraint (line 6). This might
happen because the step is calculated based on a linear
approximation. Without this check the algorithm might not
terminate. In line 13 we check whether the last collision-
free configuration satisfies the task constraint. We also check
whether we made progress toward the target configuration
or the constraint. This is necessary to make sure the higher-
level planning algorithm terminates. If so, we return the last
configuration, which is as close to the center of the constraint
as we could get. Algorithm 1 is visualized in Figure 3.

This algorithm results in numerous collision checks, since
we check for collision at every step toward the constraint.
The efficiency of the algorithm could be improved by defer-
ring the collision checks. We could step toward the constraint
without collision checks. Once the center of the constraint
is reached, we could search along the projection path for
the last collision-free configuration using bisection. This has
negligible effect on the resulting path of the planner and thus
not evaluated in our benchmarks.

IV. PLANNING ALGORITHM

Our planning algorithm consists of two parts. A bidirectional
RRT planner and a path shortener. The RRT planner shown

Algorithm 3: LocalPlanner(q1, q2, δ)

1 L1 ← [q1]; L2 ← [q2];
2 a← 1; b← 2;
3 while ||Back(L1)−Back(L2)|| > δ do
4 if newConfig(qnew, Back(Lb), Back(La)) then
5 La ← Concat(La, [qnew]);
6 progress← true;
7 else if progress then
8 progress← false;
9 else

10 return NULL;
11 end
12 Swap(a, b);
13 end
14 return Concat(L1, Reverse(L2));

Algorithm 4: ShortenPath(P, δ, n)

1 for 1 to n· Size(P ) do
2 repeat
3 i← RandomInt(1, Size(P ));
4 j ← RandomInt(1, Size(P ));
5 until i < j − 1;
6 if S ← LocalP lanner(Pi, Pj , δ) then
7 P ← Concat([P1,...,Pi−1], S,

[Pj+1,...,PSize(P )]);
8 end
9 end

in Algorithm 2 is identical to [1]. We only replace the
NewConfig function with the one in Algorithm 1.

The path shortener shown in Algorithm 4 repeatedly
selects two nodes on the path randomly and tries to shortcut
between them. The shortcutting is shown in Algorithm 3.
Unlike in [6] the shortcutting is bidirectional. We are trying
to extend both nodes toward each other. This is necessary
because otherwise we could never shortcut between two
nodes that are not at the center of the constraint. We would
extend toward the center of the constraint and then in the
direction of the other node, but we would never get close to
the other node because it is not in the center of the constraint.

V. EXPERIMENTAL RESULTS

We evaluate our algorithm by applying it to two different
scenarios. In Scenario ,1 shown in Figure 4, the task is to
take the red bottle out of the shelf an put it on the table.
The bottle is blocked by other objects such that it cannot be
removed from the shelf in an upright position. We repeat this
pick-and-place operation 100 times. In Scenario 2, shown in
Figure 6, there are no obstacles and the bottle can be moved
in an upright pose. The robot executes 10 randomly sampled
pick-and-place operations. Locations that do not yield valid
grasps due to IK or geometry are rejected. The 20 pick and
place locations are shown in Figure 6. We repeat every pick-
and-place operation 10 times resulting in a total of 100 trials.

The motivation for this paper is to design an algorithm
that tilts the bottle as necessary in Scenario 1 but keeps it



Fig. 4: Scenario 1

Constraint
Tilt RRT Max Average Path Comp.

Limit — Short. Tilt Angle Tilt Angle Length Time

∞ None 180.0◦ 59.6◦ 4.1 1 s
— None 179.9◦ 58.7◦ 2.8 2 s

0◦ Hard – – – ∞
— Hard – – – –

15◦ Hard 15.1◦ 12.3◦ 9.9 51 s
— Hard 15.2◦ 10.0◦ 4.5 8 s
— Soft 15.1◦ 4.3◦ 5.9 44 s

15◦ Soft 15.1◦ 2.9◦ 12.8 281 s
— Soft 15.1◦ 3.6◦ 5.6 58 s

TABLE I: Results for scenario 1

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(a) hard-constrained, unshortened

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(b) hard-constrained, shortened

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(c) soft-constrained, unshortened

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(d) soft-constrained, shortened

Fig. 5: Tilt angle distribution along the path for scenario 1

Fig. 6: Scenario 2

Constraint
Tilt RRT Max Average Path Comp.

Limit — Short. Tilt Angle Tilt Angle Length Time

∞ None 178.3◦ 42.3◦ 4.1 0.6 s
— None 145.7◦ 34.4◦ 2.7 1.7 s

0◦ Hard 0.2◦ 0.0◦ 4.4 1.1 s
— Hard 0.2◦ 0.0◦ 2.6 2.4 s

15◦ Hard 15.1◦ 10.4◦ 3.7 1.2 s
— Hard 15.1◦ 6.9◦ 2.3 1.9 s
— Soft 15.1◦ 1.6◦ 2.7 8.0 s

15◦ Soft 15.0◦ 1.8◦ 4.8 1.7 s
— Soft 14.9◦ 1.6◦ 3.0 12.0 s

TABLE II: Results for scenario 2

0

0.5

1

1.5

2

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(a) hard-constrained, unshortened

0

0.5

1

1.5

2

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(b) hard-constrained, shortened

0

0.5

1

1.5

2

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(c) soft-constrained, unshortened

0

0.5

1

1.5

2

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(d) soft-constrained, shortened

Fig. 7: Tilt angle distribution along the path for scenario 2



0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(a) Scenario 1

0

0.5

1

1.5

2

0 5 10 15 20

Pa
th

le
ng

th

Tilt Angle [◦]

(b) Scenario 2

Fig. 8: Tilt angle distribution along the path using a hard-
constrained RRT combined with soft-constrained shortening

upright in Scenario 2.
Table I and Table II show the results for the two scenar-

ios. The tables show results for different constraint types:
Unconstrained, exact-constrained, hard-constrained and soft-
constrained. The first line of every section represents the
path produced by the RRT planner without shortening.
Subsequent lines in the same section represent paths after
shortening has been applied to the RRT planner result. All
numbers are averages over 100 planning runs. The maximum
tilt angle is computed over all 100 runs. All runs were
performed on an Intel Core i5-560M 2.66 GHz processor.

The unconstrained planner can solve both scenarios but
leads to uncontrolled tilt angles. This can result in spilling
liquid. The planner with an exact constraint on keeping
the bottle upright, similar to the method presented in [4],
successfully finds an all-upright path for Scenario 2 but fails
in Scenario 1. For the hard- and soft-constrained planners
we allow a tilt angle of up to 15◦. This is slightly more
than what is necessary to remove the bottle from the shelf in
Scenario 1. The hard-constrained planner successfully solves
both scenarios and stays within the tilt angle limit of 15◦. Yet,
it tilts the bottle significantly in Scenario 2, often keeping
the bottle at the tilt limit. The soft-constrained planner also
solves both scenarios but reduces the tilt angle drastically,
especially in Scenario 2. However, it takes significantly
longer to plan a path. This is because we perform numerous
collision checks while moving the sampled configuration
towards the constraint. The algorithm could be sped up by
avoiding collision checks as described in Section III-B.

Figure 5 and Figure 7 show the tilt angle distribution
of the paths for both scenarios, hard- and soft-constrained,
unshortened and shortened. The graphs show that the hard-
constrained planner [6] leads to a bias toward the tilt angle
limit, whereas the soft-constrained planner effectively re-
duces the tilt angle. The soft-constrained planner does not
always keep the bottle exactly upright in scenario 2. All
configurations on the path produced by the soft-constrained
planner that are not exactly upright are close to an obstacle
or joint limit. Projecting them closer to the upright position
would lead to a collision.

We also combined a hard-constrained RRT planner with

soft-constrained shortening. We did that to be able to com-
pare the hard- and soft-constrained path shorteners on their
own starting from the same unshortened path. Also, this
combination seems to be a good trade-off between path
quality and computation time. Figure 8 shows the resulting
tilt angle distribution of this combination for both scenarios.

VI. CONCLUSION

We presented a path planner that is able to enforce soft
task constraints. Our planner improves over existing work.
Unlike [4] it is able to consider a whole interval of values
for a constrained quantity. Unlike [6] it is able to favor one
value within the interval. We demonstrated the usefulness
and effectiveness of our algorithm by showing that it can
effectively keep a container of liquid near the upright position
most of the time while still allowing some tilt in situations
where tilting the container is unavoidable.

ACKNOWLEDGEMENTS

This work is supported by Toyota Motor Engineering &
Manufacturing North America (TEMA). We thank Douglas
Moore and Yasuhiro Ota (TEMA) for their insights on soft-
constrained tasks and Michael Grey (GT) for implementing
the examples shown in Fig. 1 and the corresponding parts of
the accompanying video.

REFERENCES

[1] J. Kuffner, J.J. and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proc. of IEEE Int. Conf. on Robotics
and Automation, 2000.

[2] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, 1996.

[3] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007.

[4] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
576 –584, 2010.

[5] J. Yakey, S. LaValle, and L. Kavraki, “Randomized path planning
for linkages with closed kinematic chains,” IEEE Transactions on
Robotics and Automation, 2001.

[6] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” in Proc. of IEEE Int. Conf.
on Robotics and Automation, 2009.

[7] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. Weghe,
“Herb: a home exploring robotic butler,” Autonomous Robots, vol. 28,
pp. 5–20.

[8] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Proc. of IEEE Int. Conf.
on Robotics and Automation, 2007.

[9] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions
using a task-space voronoi bias,” in 2009. Proc. of IEEE Int. Conf. on
Robotics and Automation, 2009.

[10] S. Dalibard, A. Nakhaei, F. Lamiraux, and J.-P. Laumond, “Whole-
body task planning for a humanoid robot: a way to integrate collision
avoidance,” in Proc. of IEEE-RAS International Conference on Hu-
manoid Robots, 2009.

[11] T. T. Um, B. Kim, C. Suh, and F. C. Park, “Tangent space rrt with lazy
projection: An efficient planning algorithm for constrained motions,”
in Advances in Robot Kinematics: Motion in Man and Machine,
J. Lenarcic and M. M. Stanisic, Eds. Springer Netherlands, pp. 251–
260.

[12] J. Porta and L. Jaillet, “Path planning on manifolds using random-
ized higher-dimensional continuation,” in Algorithmic Foundations of
Robotics IX, ser. Springer Tracts in Advanced Robotics, D. Hsu,
V. Isler, J.-C. Latombe, and M. Lin, Eds. Springer Berlin / Heidelberg,
vol. 68, pp. 337–353.


