
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014

Probabilistically Complete Kinodynamic Planning
for Robot Manipulators with Acceleration Limits

Tobias Kunz and Mike Stilman

Abstract— We introduce acceleration-limited planning for
manipulators as a middle ground between pure geometric
planning and planning with full robot dynamics. It is more
powerful than geometric planning and can be solved more
efficiently than planning with full robot dynamics. We present
a probabilistically complete RRT motion planner that considers
joint acceleration limits and potentially non-zero start and goal
velocities. It uses a fast, non-iterative steering method. We
demonstrate both the power and efficiency of our planner using
the problem of hitting a nail with a hammer, which requires the
robot to reach a given goal velocity while avoiding obstacles.
Our planner is able to solve this problem in less than 100 ms.
In contrast, a purely geometric planner is unable to hit the nail
at the desired velocity, whereas a standard kinodynamic RRT
is multiple orders of magnitude slower.

I. INTRODUCTION

Sampling-based planners like RRTs [1] have been success-
fully applied to geometric path planning problems for manip-
ulators. In geometric domains they are both probabilistically
complete and can quickly find solutions in high-dimensional
configuration spaces like that of a 7-DOF manipulator in
practice. While the probabilistic completeness of RRTs in
geometric domains is based on their ability to densely
explore the whole configuration space, in practice, their
computational efficiency is based on the ability to find a
solution without exploring much. We claim that the efficient
performance of RRTs in geometric domains is largely based
on the availability of a fast-to-compute steering method. A
steering method is able to exactly and optimally connect any
two states while ignoring obstacles. In the case of geometric
path planning this steering method is trivial and returns a
straight line. The distance function used in the RRT is based
on the steering method, returning the length of the straight-
line path, i.e. the Euclidean distance. The ability of the
steering method to exactly connect two states is useful for
improving a path through shortcutting, to connect the two
trees in a bidirectional RRT planner, for the rewiring step of
an RRT* [2] or for exactly reaching a goal configuration.

By ignoring velocities completely, geometric planning
makes the assumption that the direction of motion can
be changed instantaneously, which is impractical in reality
at high speeds. To take the robot’s actual capabilities of
changing its velocity into account, we need to include the
joint velocities in the state space and add differential con-
straints. RRTs were initially introduced to deal with arbitrary
differential constraints. Since efficient steering methods do
not exist for arbitrary differential constraints, the standard

The authors are with the Institute for Robotics and Intelligent Machines
at the Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
tobias@gatech.edu

(a) DIMT-RRT (b) Geometric RRT

Fig. 1. The acceleration-limited planner (a) is able to hit the nail at the
correct velocity while the geometric planner (b) is not.

kinodynamic RRT [3–6] does not make use of a steering
method and instead uses a distance function, usually Eu-
clidean, and an incremental simulator to direct the growth
of the tree. The Euclidean distance function is uninformed
and does not incorporate any knowledge about the system
dynamics. This leads to the RRT not being able to explore the
state space efficiently. In addition, the most common variant
of the kinodynamic RRT is not probabilistically complete in
general [7].

We propose acceleration-limited planning as a middle
ground between pure geometric planning and planning with
full dynamics. Acceleration-limited planning is more pow-
erful than pure geometric planning and at the same time
can be solved with greater computational efficiency than full
dynamic planning because a steering method is available. To
our knowledge we present the first computationally efficient
and probabilistically complete sampling-based planner for
manipulators that deal with non-zero start or goal velocities
while considering actuator limitations. We present a fast,
non-iterative steering method that can efficiently solve the
boundary value problem.

While being more computationally efficient, acceleration-
limited planning is less powerful than considering the full
dynamics. But it can solve problems geometric planning
cannot. Unlike a geometric planner our planner is able to find
a trajectory that satisfies acceleration limits for problems that
include non-zero start and/or goal velocities. We evaluate our
planner on the task of hitting a nail with a hammer, which
requires a non-zero goal velocity. Fig. 1 shows the final
parts of the trajectories planned by our acceleration-limited
planner (a) and a geometric planner (b). Our planner is able
to plan a collision-free trajectory such that the hammer tip
reaches the nail with a velocity parallel to the nail. Moreover,
our planner finds a feasible solution to this problem in less
than 100 ms. In contrast, the geometric planner ignores the
goal velocity completely and plans an approach from the side

of the nail, which is not going to drive the nail into the wall.
Another application that requires a non-zero start velocity

is online replanning as the robot is already in motion at
the start of the new replanned trajectory. Also, when using
a probabilistically optimal planner like an RRT*, planning
with acceleration limits is beneficial even if both start and
goal velocity are zero, because the planner can take the
acceleration limits into account when optimizing. If only
the geometric path gets globally optimized, the trajectory
resulting from following that path might not be optimal. The
latter two applications of acceleration-limited planning are
not examined in this paper and are left for future work.

Even though the steering method is fast to compute, it is
not as trivial to implement as the Euclidean distance. Some
existing work uses a similar steering method for distinct
applications (see Sec. III-E). However, none of the papers
present the algorithm for the steering method in detail and
correctly. Thus, an additional contribution of this paper is
the detailed and correct presentation of the steering method,
which can solve the acceleration-limited boundary value
problem efficiently, in Sec. IV.

In Sec. II we formally define the problem addressed by this
paper. In Sec. III we contrast our planner to existing work in
greater detail. Our planner, described in Sec. V, combines the
RRT algorithm with the steering method. Finally we present
the results of our experiments in Sec. VI.

II. PROBLEM DEFINITION

Given a set of start states and a set of goal states, our RRT
planner finds a trajectory that connects any of the start states
with any of the goal states. The trajectory is a valid trajectory
for the following double integrator system with state vector
[p,v], which consists of joint positions p and velocities v,
and input vector a

ṗ = v v̇ = a (1)

The solution trajectory must also satisfies the following
constraints on position, velocity and acceleration and must
be collision-free.

pmin ≤ p ≤ pmax (2)
−vmax ≤ v ≤ vmax (3)
−amax ≤ a ≤ amax (4)

p ∈ Cfree (5)

The steering method solves the relaxed problem that
ignores Eq. 2 and 5. But in addition the steering method
minimizes the trajectory duration. We call this relaxed prob-
lem that ignores obstacles and minimizes trajectory duration
Double-Integrator Minimum Time (DIMT).

III. RELATED WORK

A. Adaption of a Geometric Path

One approach of dealing with actuator limitations is to de-
compose the planning problem into two steps, first planning a
geometric path and then adapting this path and turning it into
a time-parameterized trajectory such that actuator limitations
are satisfied. As long as the feasible accelerations always

contain an ε-neighborhood of zero, any geometric path can
be followed by the robot. There has been much work on time-
optimally following a given path such that either acceleration
or force/torque limits are satisfied. [8–15]. Hauser et al. [16]
use limited-acceleration shortcuts to turn a path into a smooth
trajectory. They use a steering method similar to the one
presented in this paper to generate the shortcuts. However,
none of the post-processing methods is able to deal with
a non-zero start or goal velocity. In addition, if optimality
was considered, the post-processing would not result in an
optimal trajectory even if the original path was optimal.

B. Kinodynamic RRT with Incremental Simulator

The kinodynamic RRT as presented in [3–6] is able to
deal with general differential constraints including problems
involving full robot dynamics as well as the acceleration-
limited problem considered here. Since efficient steering
methods are generally not available, the kinodynamic RRT
does not make use of them, but instead only requires an in-
cremental simulator, which can forward simulate the system
for a given time step and control input. It also requires a
distance function.

The kinodynamic RRT extends the tree toward a sample
by selecting the closest node using the provided distance
function. The tree is grown from that node by simulating
the system forward for a small amount of time. The control
input for that is either selected randomly or multiple input
trajectories are forward-simulated and the one is picked that
gets the tree closest to the sample using the provided distance
function. The first option is proven to be probabilistically
complete but does not lead to a directed growth of the tree.
The second and more common option is time-consuming in
high-dimensional spaces and is not probabilistically complete
in general [7]. It is unknown whether it is probabilistically
complete for the problem considered here. Both options do
not allow for exact connection of states and thus do not allow
exact goal states, shortcutting or rewiring being used by the
algorithm.

The performance of the kinodynamic RRT depends on a
good distance function. In the lack of a fast-to-compute and
high-quality distance function, most work uses a Euclidean
distance, which does not give a good approximation of the
real cost and might hinder the efficient growth of the tree.
Unlike our steering method and the distance function derived
from it, the Euclidean distance is not even aware of the
fact that velocity is the derivative of position. A weighted
Euclidean distance function [5] might improve performance
but requires tuning the weights to the specific problem. Our
distance metric, in contrast, is parameter-free.

C. LQR-RRT

Recently, there have been efforts [17–20] to use a more accu-
rate distance metric by using LQR methods from optimal lin-
ear control. These algorithms linearize the system dynamics
around the current node or sample. Together with a quadratic
cost functional this leads to an LQR problem, which can
be solved for the optimal trajectory and cost. Sampling of
control inputs is avoided in [18–20]. The solution to the

LQR problem gives an optimal trajectory for the linearized
system, which can be applied to the original nonlinear
system. For nonlinear systems LQR requires linearization.
Thus the distance function is only a good approximation in
the neighborhood of the linearization point, which hinders
efficient exploration. For linear systems like the acceleration-
limited problem considered here LQR is able to consider
the differential constraints exactly. However, solving the
finite-time LQR problem in [17, 19, 20] requires numerical
integration, which is computationally expensive. In contrast,
our distance function is non-iterative and fast. In addition,
the LQR problem can only deal with quadratic costs on the
input and the state, but not limits like our problem involves.
Transforming limits into costs requires parameter tuning.

D. Trajectory Optimization

Trajectory optimizers like e.g. CHOMP [21] and STOMP
[22] can handle very general dynamics and task constraints
and can produce smooth trajectories. They can be applied to
problems our approach cannot. However, they are prone to
getting stuck in local optima. Since obstacles and other hard
constraints are also represented as cost, a locally-optimal
trajectory might be infeasible. Getting a trajectory optimizer
to output feasible and good-quality trajectories often involves
tuning parameters to the specific problem. For example the
weights of different parts of the cost functional are crucial.
In contrast, our algorithm does not have any parameters that
need to be tuned. CHOMP and STOMP use randomness to
evade local optima, the amount of which is subject to tuning
again. Our planner could be used to provide a better initial
guess to a trajectory optimizer.

E. Double-Integrator Minimum Time

Some previous work also exploits the fact that the double-
integrator minimum time problem can be solved efficiently.
Kröger et al. [23–25] use it for online trajectory generation.
However, their work does not plan or check collisions. They
just generate a time-optimal trajectory to the given goal state
and follow it in real-time. They assume that a planner or
some other program on top of their controller chooses the
intermediate goal states wisely. Their early work [23] only
deals with a simpler case of the DIMT problem assuming
a zero velocity at the goal (Type I in their nomenclature).
Their later work [24, 25] deals with a more general and
complex problem, which includes jerk limits (Type IV).
Since that problem is very complex, they only describe part
of its solution in detail and never describe the solution to
the problem we are solving, which is a Type II problem in
their nomenclature. Based on their high-level description we
attempt to note the differences to their algorithm in Sec. IV.

Hauser et al. [16] use the solution to the DIMT problem
to smooth a given path using given acceleration limits. They
try to solve the same DIMT problem as our approach. While
[16] describes the algorithm in detail, parts of their algorithm
and equations are incorrect, as will be explained in Sec. IV.

IV. STEERING METHOD:

t

t

t
0 T

Fig. 2. Determining the overall minimum time t from the individual DOF’s
minimum times and infeasible time intervals

DOUBLE-INTEGRATOR MINIMUM TIME (DIMT)

This section presents the steering method that is used to
connect states within the RRT and that provides a distance
function for selecting the nearest neighbor. The steering
method is able to exactly connect two given states, which
consist of positions and velocities of all joints. The steering
method returns the time-optimal trajectory satisfying the
given velocity and acceleration limits The only constraints
the steering method ignores are obstacles in the workspace
and position limits. These are handled by the RRT algorithm.

The algorithm for finding the time-optimal trajectory con-
sists of two steps. First, we calculate the minimum time T
at which all DOFs can reach their goal state simultaneously.
Second, we calculate trajectories for each individual DOF to
reach their goal state at that time T .

Note that the overall minimum time is different from
the minimum times of the individual joints. Furthermore,
unlike claimed in [16], the overall minimum time is not the
maximum of all the individual minimum times. In addition
to having a minimum time to reach its goal state, each indi-
vidual DOF also has up to one infeasible time interval, which
is greater than the minimum time, but during which the DOF
cannot reach its goal state [24]. Section IV-B describes how
to calculate the minimum time for an individual DOF and
section IV-C how to calculate the infeasible interval. After
these have been determined for every DOF, we find the
overall minimum time as the smallest time that is at least
as great as the greatest individual minimum time and is not
within any infeasible time interval (see Fig. 2).

After the overall minimum time T has been determined,
section IV-D describes how to calculate a trajectory for each
individual DOF to reach its goal state at time T .

All the following subsections are only considering one
individual DOF.

A. Solving Quadratic Equations

This section describes how to solve a quadratic equation
explicitly for either the greater or the lesser one of the
two solutions without having to calculate and compare both
solutions to figure out whether they satisfy given constraints
as it is done in [16].

The solution to the quadratic equation

ax2 + bx+ c = 0 (6)

is given by

q = −1

2

(
b+ sgn(b)

√
b2 − 4ac

)
(7)

x1 =
q

a
x2 =

c

q
(8)

p

v

V

IV III

II

I

Fig. 3. Regions of the phase plane the goal state can be in relative to the
start state. The shown separating trajectories are at an acceleration limit.
Without loss of generality this figure assumes a positive start velocity.

The solutions satisfy |x1| ≥ |x2|. If sgn(a) = sgn(b), then
x1 ≤ x2. Otherwise, x1 ≥ x2.

B. 1-DOF Minimum Time

The minimum-time trajectory for a single DOF consists of
either 2 or 3 segments. The first and the last one have a
constant acceleration of a1 and a2 respectively, whereas the
acceleration must be at one of the acceleration limits. The
optional middle segment has a constant velocity at one of
the velocity limits. We need to determine the sign of a1
and a2 and whether the minimum-time trajectory includes a
constant-velocity segment. Unlike [16] we do not solve the
problem for all 4 possibilities. Instead we first determine the
signs of the accelerations a1 and a2 and of the velocity limit
that we might potentially hit.

We can visualize the dependence of the sign of the
accelerations and velocity limit on the start and goal states
in the phase plane. Fig. 3 shows minimum- and maximum-
acceleration trajectories emanating from a given start state.
If the goal state is in regions I/II/III, a1 has the same sign as
the start velocity. In regions IV/V it has the opposite sign.

To determine the sign programmatically, we compare the
distance traveled ∆pacc while accelerating as fast as possible
from the start velocity v1 to the goal velocity v2 with
the actual distance between the start position p1 and goal
position p2.

∆pacc =
1

2
(v1 + v2)

|v2 − v1|
amax

(9)

σ = sgn(p2 − p1 −∆pacc) (10)
a1 = −a2 = σamax (11)

vlimit = σvmax (12)

We first find a solution without a constant-velocity segment.
We solve the following quadratic equation for the duration
of the first segment ta1.

a1t
2
a1 + 2v1ta1 +

v22 − v21
2a2

− (p2 − p1) = 0 (13)

This quadratic equation has two solutions, but only one of
them is valid. ta1 must be positive. So does the duration of
the second segment ta2 given as

ta2 =
v2 − v1
a2

+ ta1 (14)

The requirement for ta2 to be positive can be transformed
into a lower bound on ta1. Thus, we have two lower bounds

on ta1 and the valid solution of Eq. 13 is always the greater
one of the two (see Sec. IV-A). The total time is T = ta1 +
ta2.

Whereas Eq. 13 is the same as in [16], the constraints
on ta1 to find the valid one of the two solutions are given
incorrectly in [16].

We check whether the solution satisfies the velocity limits
by checking the extreme velocity at time ta1. If the solution
is valid, then it is the minimum-time one. Otherwise, the
minimum-time solution has a constant-velocity segment and
is given by

ta1 =
vlimit − v1

a1
(15)

tv =
v21 + v22 − 2v2limit

2vlimita1
+
p2 − p1
vlimit

(16)

ta2 =
v2 − vlimit

a2
(17)

C. Infeasible Time Interval
A DOF has an infeasible time interval if and only if the
goal state is in region I of Fig. 3. Fig. 4 visualizes the
reason for the existense of the infeasible interval. It shows
the trajectories that define the minimum time as well as the
bounds of the infeasible interval. Reaching the goal state
can be continuously delayed by choosing a lower-velocity
trajectory anywhere between the solid and the dashed trajec-
tory. However, this is only possible to an extent (until the
dashed trajectory is reached) while still reaching the goal
state directly. To further delay reaching the goal state, the
DOF has to come to a complete stop and move backwards
before accelerating towards the goal state. This requires
additional time and thus gives rise to the infeasible time
interval.

There is no such infeasible time interval for regions III
- V, since the time-optimal trajectory to those regions has
to cross through zero velocity. Thus the arrival time could
be arbitrarily delayed by waiting at zero velocity. (Note,
however, that this is not what we actually do.) There is no
infeasible time interval for region II because the trajectory
could be continuously slowed down to reach zero velocity. To
calculate the infeasible time interval for region I, we switch
the signs of a1, a2 and vlimit.

a1 = −a2 = −σamax (18)
vlimit = −σvmax (19)

We solve Eq. 13 with a1 and a2 as defined in Eq. 18. The
lower bound of the infeasible interval is given by the lesser
solution to the quadratic equation and the upper bound is
given by the greater solution (see Sec. IV-A). The trajectory
representing the upper bound of the infeasible interval might
violate velocity limits. If that is the case, the trajectory
satisfying velocity limits is given by Eq. 15 - 17 with a1, a2
and vlimit as defined in Eq. 18 and 19.

D. Fixed-Time Trajectory
There is an infinite number of possible trajectories to reach
a given goal state at a given feasible time. Previous work
makes different choices about which trajectory to pick.

p

v

Fig. 4. Extremal-acceleration trajectories
defining the minimum time (solid) and the
lower (dashed) and upper (dotted) bounds of
the infeasible interval.

p

v

(a) Region I (for a time greater than the
infeasible interval)

p

v

(b) Region III

Fig. 5. Comparison of fixed-time trajectories as calculated by this paper and Hauser et al. [16]
(solid) with previous work by Kröger [24] (dashed).

Kröger [24] chooses the trajectory to only consist of seg-
ments with either extremal or zero acceleration. However,
this leads to unnecessarily high accelerations in some cases.
Hauser et al. [16] in contrast choose the trajectory such that
it minimizes the maximum absolute value of acceleration.
However, unlike in [24] this might result in a trajectory
that does not satisfy the joint limits even though it would
be possible to satisfy them. We choose to follow Hauser
et al. [16] and minimize the maximum absolute value of
acceleration. Fig. 5 compares the fixed-time trajectories as
calculated by us and Hauser et al. with the one calculated
by Kröger. The rest of this section presents the algorithm for
finding the minimum-acceleration trajectory, which almost
exactly follows Hauser et al. [16]. The only small difference
is that we are not evaluating both solutions to Eq. 20.

We find the minimum-acceleration trajectory by solving
the following quadratic equation for a1

T 2a21 + (2T (v1+v2)− 4(p2−p1)) a1− (v2−v1)2 = 0 (20)

The solution with the greater absolute value gives the acceler-
ation a1 with a2 = −a1. The durations of the two trajectory
segments are given by

ta1 =
1

2

(
v2 − v1
a1

+ T

)
ta2 = T − ta1 (21)

If the trajectory violates velocity limits, we calculate the
alternative solution with a constant-velocity segment at a
velocity limit. The limit velocity is given by

vlimit = sgn(a1) vmax (22)

with a1 as given by Eq. 20. The new accelerations satisfying
the velocity limits are then given by

a1 = −a2 =
(vlimit − v1)2 + (vlimit − v2)2

2(vlimitT − (p2 − p1))
(23)

The durations are given by Eq. 15 - 17 while using vlimit, a1
and a2 as defined in Eq. 22 and 23.

V. DIMT-RRT

Our planner combines the existing bidirectional RRT-
Connect planner [1] with the steering method presented in
Sec. IV. Our DIMT-RRT planner is shown in Algorithm 1.

We sample the state space consisting of joint positions and
velocities (line 5). While sampling, we reject samples that
cannot be part of a feasible solution, since it is unavoidable
to hit a position limit before or after reaching them. This is

the case for example if a DOF is moving with a high velocity
towards a nearby position limit. This step is more important
than it might seem. In our planning scenario 92% of samples
get rejected.

We try to grow both trees towards the sample (lines 6
and 7). Different variations of the RRT-Connect algorithm
exist. The two trees can either only make one step toward
the sample (extend) or try to grow all the way to the sample
(connect). We are using the latter method for both trees.

Algorithm 2 makes a connection attempt from a tree to
the sample. Unlike in [1] our trajectories are not reversible.
Thus, the parameter d keeps track of the direction of the tree
growth. We are either growing the start tree forward in time
or the goal tree backward in time.

We calculate the closest node in the tree using the steering
method presented in Sec. IV (line 1). We use linear search
to find the closest node. We cannot use data structures for
efficient nearest-neighbor search in metric spaces since the
DIMT distance function is not symmetric and thus not a
metric. Only Sec. IV-B and IV-C, but not Sec. IV-D are used
for the distance calculation.

Once the closest node is found, we calculate the trajectory

Algorithm 1: DIMT-RRT(xinit, Xgoal,∆t)

1 V1 ← {xinit}; E1 ← ∅;
2 V2 ← Xgoal; E2 ← ∅;
3 d = true;
4 while true do
5 xrand ← SampleReachableState();
6 if Connect(V1, E1, xrand, d,∆t) then
7 if Connect(V2, E2, xrand,¬d,∆t) then
8 return ExtractTrajectory(V1, E1, V2, E2, d);
9 Swap((V1, E1), (V2, E2));

10 d = ¬d;

Algorithm 2: Connect(V,E, xrand, d,∆t)

1 xnear ← NearestNeighbor(V, xrand, d);
2 (T, σ)← Steer(xnear, xrand, d);
3 if CollisionFree(T, σ) then
4 Xint ← IntermediateStates(T, σ,∆t);
5 V ← V ∪ Xint ∪ {xrand};
6 E ← E ∪ {xnear} ×Xint ∪ {(xnear, xrand)};
7 return true;
8 else
9 return false;

after 100 after 200
RRT only shortcuts shortcuts

samples 39.5 - -
± 41.3

nodes 567.1 - -
± 407.0

Computation 56 ms 113 ms 157 ms
time ± 54 ms ± 63 ms ± 65 ms

Trajectory 12.4 s 6.4 s 6.1 s
length ± 4.0 s ± 1.1 s ± 1.1 s

TABLE I
RESULTS OF THE DIMT-RRT PLANNER FOR THE PROBLEM OF HITTING

THE NAIL. AVERAGES OVER 100 RUNS ON A SINGLE CORE OF AN INTEL

XEON E5-1620 CPU AT 3.6 GHZ WITH STANDARD DEVIATIONS.

σ as described in Sec. IV-D (line 2) and check it for collisions
(line 3). If it is collision-free, we add the sample to the
tree. The actual trajectory does not need to be stored. It can
easily be reproduced, since the steering method is fast and
deterministic. For improved performance, we not only add
a node for the sample to the tree but also evenly spaced
intermediate nodes along the trajectory (line 4).

VI. EXPERIMENTS

To evaluate our planner we apply it to the problem of hitting
a nail with a hammer that is attached to a 7-DOF manipulator.
We choose joint velocity and acceleration limits of vmax =
π/2 rad/s and amax = π/4 rad/s2. The hammer tip must not
only reach the nail, it must also do so at a velocity parallel
to the nail. We arbitrarily define this velocity to be 0.6 m/s.
We automatically generate a set of joint states that satisfy
these requirements. The details of this process are beyond
the scope of this paper. Here we consider the goal states to
be given in joint space. We focus on the problem of planning
the trajectory until impact and ignore the problem of what
to do when in contact with the nail.

To make the task harder we place an obstacle in the
workspace of the robot. The obstacle is placed such that the
robot can touch the nail with the hammer while reaching
underneath the obstacle (Fig. 7). However, the obstacle
makes it impossible to hit the nail at the required velocity
while reaching underneath it. Instead, the planner must find
a trajectory that reaches over the obstacle (Fig. 6). We check
trajectories for collision discretely every 0.1 seconds.

A. Performance of the Bidirectional DIMT-RRT

The DIMT-RRT planner finds a trajectory that hits the nail in
the desired direction and at the desired velocity. We smooth
the trajectory using shortcutting as described in [16]. The
shortened trajectory is shown in Fig. 6 and Fig. 1(a). The
DIMT-RRT planner is not only able to find a trajectory that
satisfies the task requirements, it also does so very quickly.
Table I shows the computation time of the DIMT-RRT
planner and the length of the generated trajectory with and
without smoothing using shortcuts. In average the planner
finds a feasible trajectory in only 103 ms. The table also
shows that this is caused by a low number of samples (only
40 in average) required by the RRT. This shows that our

DIMT-RRT [this paper] Kinodynamic RRT [6]
extend connect extend connect

samples 9,019 14.6 > 1,000,000
± 8,415 ± 10.8

nodes 9,633 434.1 > 900,000 > 2,500,000
± 8,096 ± 188.4

Computation 19.8 s 37 ms > 8 hours > 23 hours
time ± 37.1 s ± 22 ms

TABLE II
COMPARISON OF A SINGLE-TREE VARIANT OF THE DIMT-RRT AND THE

STANDARD KINODYNAMIC RRT WITH A EUCLIDEAN DISTANCE METRIC.

steering method allows the RRT to solve the problem very
efficiently without exploring much of the state space.

B. Comparison to Geometric RRT
The geometric planner uses the same set of goal states as
the DIMT-RRT planner but ignores the velocity part. The
geometric planner is able to reach the nail but does so from
the side of the nail, which makes it impossible to drive the
nail into the wall. The generated path is shown in Fig. 7
and 1(b). Since the geometric planner generated a path that
reaches under the obstacle, the path cannot even be locally
adapted to hit the nail at the desired speed.

C. Comparison to Standard Kinodynamic RRT
We compare the performance of our DIMT-RRT algorithm to
a standard kinodynamic RRT [6] with a Euclidean distance
metric. We use single tree variants of both algorithms that
extend the tree by a fixed time step of 0.1 s. We alternate
between sampling randomly and among the goal states. We
consider two strategies for growing the tree. The extend
strategy, which corresponds to the original kinodynamic RRT
[6], makes exactly one step from the nearest node to the
sample. The connect strategy repeatedly extends the tree
towards the same sample until no more progress is made
according to the used distance function.

There are only a few key differences between the two
algorithms compared here. For the DIMT-RRT if the sample
is less than a time step away, we connect the tree to the sam-
ple exactly. The algorithm terminates once the tree exactly
connects to a goal state. For the standard kinodynamic RRT
the tree is always grown by exactly one time step potentially
overshooting the sample. Thus, for termination the algorithm
only requires the Euclidean distance between a new node and
the goal state the tree was growing toward to be less than
0.5. The DIMT-RRT rejects samples that cannot be reached
without violating position limits, the standard kinodynamic
RRT does not.

The standard kinodynamic RRT is not able to solve the
problem at hand in a reasonable amount of time. We aborted
the algorithm after 1,000,000 samples. The algorithm ran
for more than 8 hours. Since we use linear search for deter-
mining the nearest neighbor, the algorithm could potentially
be sped up. But this is not going to reduce the number of
samples or get the computation time in the range of seconds.
In contrast, as Fig. II shows, the variation of the DIMT-RRT
is able to solve the problem efficiently. The connect strategy
is significantly faster than the extend strategy.

Fig. 6. The DIMT-RRT planner hits the nail at the desired velocity

Fig. 7. The geometric RRT planner reaches the nail but not at the desired velocity

VII. CONCLUSION

We proposed the problem domain of acceleration-limited
planning for manipulators. The presented probabilistically
complete planner for this problem domain is highly efficient
thanks to the use of a non-iterative steering method, which
can solve the boundary value problem. We showed that
this planner can solve problems a geometric planner cannot.
Thus, for the presented problem our planner has advantages
over both geometric and dynamic planners.

Some improvements to the DIMT-RRT planner are left
for future work. The steering method could be changed to
consider joint position limits. The nearest neighbor procedure
could be improved to find the closest state within a trajectory.
This would make adding intermediate nodes unnecessary.

We plan to apply the DIMT steering method to asymptoti-
cally optimal planners in the future, which require the ability
to exactly connect states for rewiring.

ACKNOWLEDGMENTS

This paper is dedicated to the memory of Mike Stilman.
This work was supported in part by ONR grant N00014-14-
1-0120.

REFERENCES

[1] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE Int. Conf. on Robotics and
Automation, 2000.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The Int. Journal of Robotics Research, vol. 30, no. 7,
pp. 846–894, 2011.

[3] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
98-11, 1998.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
in IEEE Int. Conf. on Robotics and Automation, 1999.

[5] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions 2000 WAFR, 2000, pp. 293–308.

[6] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The Int. Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[7] T. Kunz and M. Stilman, “Kinodynamic RRTs with fixed time step
and best-input extension are not probabilistically complete,” in Int.
Workshop on the Algorithmic Foundations of Robotics, 2014.

[8] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” The Int. Journal of
Robotics Research, vol. 4, no. 3, pp. 3–17, 1985.

[9] K. Shin and N. McKay, “Minimum-time control of robotic manip-
ulators with geometric path constraints,” IEEE Trans. on Automatic
Control, vol. 30, no. 6, pp. 531–541, 1985.

[10] F. Pfeiffer and R. Johanni, “A concept for manipulator trajectory
planning,” IEEE Journal of Robotics and Automation, vol. 3, no. 2,
pp. 115–123, 1987.

[11] J.-J. Slotine and H. Yang, “Improving the efficiency of time-optimal
path-following algorithms,” IEEE Trans. on Robotics and Automation,
vol. 5, no. 1, pp. 118–124, 1989.

[12] Z. Shiller and H. Lu, “Computation of path constrained time optimal
motions with dynamic singularities,” Journal of dynamic systems,
measurement, and control, vol. 114, p. 34, 1992.

[13] T. Kunz and M. Stilman, “Time-optimal trajectory generation for
path following with bounded acceleration and velocity,” in Robotics:
Science and Systems, 2012.

[14] Q.-C. Pham, “Characterizing and addressing dynamic singularities in
the time-optimal path parameterization algorithm,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2013.

[15] K. Hauser, “Fast interpolation and time-optimization on implicit
contact submanifolds,” in Robotics: Science and Systems, 2013.

[16] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in IEEE
Int. Conf. on Robotics and Automation, 2010.

[17] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in IEEE Int. Conf. on Robotics and
Automation, 2010.

[18] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“Lqr-rrt*: Optimal sampling-based motion planning with automatically
derived extension heuristics,” in IEEE Int. Conf. on Robotics and
Automation, 2012.

[19] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-
based planning for linear-quadratic kinodynamic systems,” in IEEE
Int. Conf. on Robotics and Automation, 2013.

[20] D. J. Webb and J. van den Berg, “Kinomdynamic rrt*: Optimal motion
planning for systems with linear differential constraints,” in IEEE Int.
Conf. on Robotics and Automation, 2013.

[21] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in IEEE Int.
Conf. on Robotics and Automation, 2009.

[22] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE Int. Conf. on Robotics and Automation, 2011.

[23] T. Kroger, A. Tomiczek, and F. Wahl, “Towards on-line trajectory
computation,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2006.

[24] T. Kröger, On-line trajectory generation in robotic systems. Springer,
2010.

[25] T. Kroger and F. Wahl, “Online trajectory generation: Basic concepts
for instantaneous reactions to unforeseen events,” IEEE Transactions
on Robotics, vol. 26, no. 1, pp. 94–111, 2010.

