Robotics:

Science and Systems

(RSS), 2012

Time-Optimal Trajectory Generation for Path
Following with Bounded Acceleration and Velocity

Tobias Kunz and Mike Stilman
School of Interactive Computing, Center for Robotics and Intelligent Machines
Georgia Institute of Technology
Atlanta, GA 30332
Email: tobias@gatech.edu, mstilman@cc.gatech.edu

Abstract—This paper presents a novel method to generate the
time-optimal trajectory that exactly follows a given differentiable
joint-space path within given bounds on joint accelerations and
velocities. We also present a path preprocessing method to make
nondifferentiable paths differentiable by adding circular blends.
We introduce improvements to existing work that make the
algorithm more robust in the presence of numerical inaccuracies.
Furthermore we validate our methods on hundreds of randomly
generated test cases on simulated and real 7-DOF robot arms.
Finally, we provide open source software that implements our
algorithms.

I. INTRODUCTION

To deal with the complexity of planning a robot motion, the
problem is often subdivided in two or more subproblems. The
first subproblem is that of planning a geometric path through
the environment, which does not collide with obstacles. In an
additional step this path is converted into a time-parametrized
trajectory that follows the path within the capabilities of the
robot. Preferably we are looking for a near-optimal trajectory
according to some optimality criterion. In practice the capa-
bilities of the robot cannot be expressed exactly. Thus, the
capabilities of the robot are normally approximated by using
some model of the robot and limiting certain quantities. One
option is to model the dynamics of the robot and limit the
torques that can be applied by the joints. In this paper we are
using limits on joint accelerations and velocities which are
often available.

This paper presents a method to generate the time-optimal
trajectory along a given path within given bounds on acceler-
ations and velocities. The path can be given in any arbitrary
configuration space. However, we assume that the acceleration
and velocity of individual coordinates are limited. Thus, the
configuration coordinates need to be chosen such that they
match the quantities that need to be limited. For a robot
manipulator the coordinates are typically chosen to match
joints of the robot. Thus, we will refer to the limits as joint
acceleration and joint velocity limits. We assume that the path
is differentiable with respect to some path parameter s. This
is a weak assumption. If the path was not differentiable at a
point, the robot would have to come to a complete stop at
that point in order to follow the path. Then the path could
be split at that point and the method presented here could be
applied to each part of the path. We also assume that the path

Fig. 1.

Circular blend around waypoint

curvature is piecewise-continuous and that for every piece the
path is coplanar.

The output of a typical geometric path planner is a path
in configuration space consisting of continuous straight line
segments between waypoints. Such a path is not differentiable
at the waypoints. Thus, we also present a preprocessing step
to make such a path differentiable by adding circular blends.

II. RELATED WORK

One approach described in standard textbooks [1, 2] to
generate a trajectory that satisfies acceleration and velocity
constraints from a list of waypoints is to use linear segments
with parabolic blends. However, the approach is not directly
applicable to automatically generated paths with potentially
dense waypoints. They assume that the timing between the
waypoints and thus the velocities for the linear segments are
already known. However, a path normally does not include
timing for the waypoints. Choosing the timing is not trivial.
Generally we prefer to move fast, but if we move too fast,
neighboring blend segments might overlap and render the
trajectory invalid.

In [3] a very simple method for choosing the timing is
presented. This method tries to resolve overlaps of blend
segments locally by slowing down neighboring linear segments
until no blend segments overlap. Yet, this method can lead to
very slow trajectories, especially if the waypoints are close
together.

The general approach used in this paper was introduced by
Bobrow et al. [4] and by Shin and McKay [5]. We build on
the later one. They propose to convert all joint constraints
into constraints on the acceleration and velocity along the

path, which reduces the problem to one dimension and then
search in the two-dimensional phase plane for the optimal
trajectory. They consider not only acceleration constraints but
use a more general model. They are able to limit torque in the
presence of robot dynamics or even to limit the voltage in the
presence of motor dynamics. Partially due to this generality,
their derivation is more complex than ours. We are therefore
able to more thoroughly consider all possible special cases. [3]
falsely claims that at every point along the limit curve there
is only a single feasible acceleration. It also does not consider
limits on joint velocities. Finally, Shin searches for switching
points solely numerically, which is less efficient and makes
the algorithm more likely to fail, especially in the presence of
discontinuities in the path curvature.

The following papers have built on top of this general
approach. All of them assume torque constraints. A couple
of papers analyse conditions for switching points in order to
be able to calculate them explicitly instead of searching for
them numerically.

[6] notes that points where the limit curve is non-
differentiable are potential switching points and gives a nec-
essary condition for identifying them. It also states that there
is more than one valid acceleration at these switching points.

[7] lists all possible cases for switching points and gives
necessary conditions for some of them that can be used to
explicitly calculcate switching point candidates. However, they
do not give sufficient conditions for switching points. Also,
one of the cases still requires a numerical search. We will show
that the case that requires a numerical search in [[7] cannot
happen in our case with acceleration limits instead of torque
limits and a piecewise planar path. We only use a numerical
search for switching points caused by joint velocity limits.

[8] deals with those switching points along the limit curve
where the acceleration is not uniquely determined. However,
we will show that the acceleration they claim to be optimal at
such a point is incorrect.

Finally, [9]] considers joint velocity constraints in addition
to torque constraints.

None of the previous work deals with numerical issues or
reports how robustly their algorithm performs.

III. CONTRIBUTION

Our algorithms build on existing work. The novel contributions
of this paper are the following:

o Combining path-following with a preprocessing step that
converts the output of typical path planners to a differen-
tiable path.

« A more thorough derivation of the constraints in the phase
plane than [5]. At the same time our derivation is simpler
since we only cover a special case of [3].

o« We show that for the case of constraints on only ac-
celeration and piecewise-planar paths, the limit curve is
never continuous and differentiable at a switching point.
Thus, we can calculate all switching points along the
acceleration limit curve explicitly. Previous work relied

at least partially on numerical search, but also handled
the more general case of torque constraints.

« [18] applies an incorrect optimal acceleration at switching
points where the limit curve is non-differentiable. We
demonstrate this and provide an alternative solution.

e« We provide sufficient conditions for switching points
instead of just necessary ones.

e An improvement to the algorithm that makes it more
robust in the presence of numerical inaccuracies.

¢ Our algorithm is demonstrated to be sufficiently robust to
follow over 100 randomly generated paths without failing.

« We provide open-source software, available for download
at http://www.golems.org/node/1570.

IV. PATH PREPROCESSING

Common geometric path planners like PRMs or RRTs usu-
ally output the resulting path as a list of waypoints, which
are connected by straight lines in configuration space. At a
waypoint the path is changing its direction instantaneously
and thus is not differentiable. In order to follow such a path
exactly, the robot would have to come to a complete stop at
every waypoint. This would make the robot motion very slow
and look unnatural. Therefore, we add circular blends around
the waypoints, which make the path differentiable. If the path
is already differentiable, the preprocessing described in this
section can be omitted.

We are looking for a circular segment that starts tangential
to the linear path segment before the waypoint and ends
tangential to the linear path segment after the waypoint. We
also need to ensure that the circular segment does not replace
more than half of each of the neighboring linear segments.
Otherwise we might not get a continuous path. In addition,
we allow the enforcement of a maximum deviation from the
original path.

First, we define some quantities that are helpful to define
the circle (see also Figure [I)). The unit vector y; pointing from
waypoint g;—1 to q; is given by

~ qi — qi—-1
gi = ——
lgi — qi—1]

The angle «; between the two adjoining path segments of
waypoint g; is given by

(D

a; = arccos (s « Yiy1) 2

The distance ¢; between waypoint q; and the points where the
circle touches the linear segments is given as

l; = min{”qz‘ — qi—1|| ||git1 —qil| dsin

2 ’ 2 ’1008051'})

where the first two elements give the maximum possible
distances such that the circular segment does not replace more
than half of the adjoining linear segments and the last element
limits the radius to make sure the circlular segment stays
within a distance § from waypoint g;.

Given the quantities above, we can now define the circular
segment. The circle is defined by its center c;, its radius ; and

http://www.golems.org/node/1570

two vectors &; and ¢; spanning the plane in which the circle
lies. The vectors &; and ¢; are orthonormal. &; points from
the center of the circle to the point where the circle touches
the preceding linear path segment. ¢; is the previously defined
direction of the preceding linear segment.

4
" tan% “)
A. J— A. /r'A
ci =q; + Z{H_l Zfz e)
[|Gi41 — Dsl|] cos G
. a; — 1if; — ¢
Ti=7 (6)
@ — 49 — il

Given these quantities specifying the circle, we can calculate
the robot configuration q for any point on the circular segment
as a function f(s) of the arc length s traveled from the start
of the path. As we are currently only considering the current
circular path segment, we assume s; < s < s; + a;r;, where
s; specifies the start of the circular segment. Similarly we can
calculate the first and second derivatives of the function f(s).
Note that these are not time-derivatives but derivatives by s.
We will make use of these derivatives later.

g=f(s)=ci+r; (wzcos (r) + §; sin (j)) @)
fl(s)=—&; sm() + 9; cos (s) 8)

r; r;
(s)——% (:czsm (r)—i—yzcos (;)) 9)

V. REDUCTION TO ONE DIMENSION

The approach we are using was originally proposed in [J5],
which finds a minimum-time trajectory that satisfies torque
limits on the joints. In constrast, we assume acceleration and
velocity limits on the joints. Acceleration limits are a special
case of torque limits. Using acceleration instead of torque
limits results in a simpler problem and a simpler derivation
of the following equations than in [5]]. Unlike [5] and like [9],
we are also considering velocity limits on the joints.
Because the solution is constrained to follow a given path
exactly, the problem can be reduced to one dimension: choos-
ing the velocity § = % for every position s along the path.
A path of length sy is given as a function f : [0, sf] — R™.
The configuration ¢ at a point s along the path is given by

qg=f(s) 0<s<sy (10

where s can be an arbitrary parameter. We will assume it is
the arc length traveled since the start of the path. We can also
define the joint velocities and accelerations with respect to the
parameter s.

d d d
§=5F() = TF) 7
G=F(s)5+£"(s) 8

If s is the arc length, $ and § are the velocity and acceleration
along the path, then f’(s) is the unit vector tangent to the
path and f”/(s) is the curvature vector. [§]]

=f'(s)$ an

(12)

The constraints in the high-dimensional joint space need to
be converted into constraints on the scalar path velocity $(s)
and path acceleration §(s, $). The constraints on joint accel-
erations result in constraints on the acceleration and velocity
along the path as shown in Section The constraints on
joint velocities result in constraints on the velocity along the
path as presented in Section
A. Joint Acceleration Limits
We have constraints on the joint accelerations given as
Vi e [0,...,n]

qmax < q < qmax (13)

where ¢; is the ith component of vector ¢. Although the uni-
versal quantifier is ommited in the following, all the following

inequalities have to hold for all i € [0, ..., n].
.) < qmax < fz()S"‘f{,()S < qmax (14)
If f/(s)>0
A OL Y L (OY
A O (O R OO
e O L R (O L
TS T R 121 R
If f(s) < 0
S) E L fi(s)
e 76 e 2w e 7P
o F)E i fl(s)
CUET e SR e Y
If f/(s)=0and f/'(s) # 0:
_q;nax .2 q;nax
B e < < e 19
G, 20
TS G0

If f/(s) =0 and f/'(s) =0, Eq.|14]is always satisfied.
Eq. [16] and Eq. [I8] are equivalent. Thus, the limits on the
path acceleration § are

5N (5 5) < § < 5MAX(s, 5) (1)
with
<min . qinax fiI/(S)‘é2
Fe8) = it (If() f;<s>> (22
I @ fr(s)P
§7(5,8) = nin <f()| f;<s>))
fi(s)#0

i

The limit on the path acceleration also constrains the path
velocity, because in order for a path velocity to be feasible we
need §™M" (s, §) < §M%%(s,). We now derive the path velocity
limit $22%(s) caused by acceleration constraints. We get rid of
the min and max functions in Eq. 22] and 23] by requiring the
inequality to hold for all possible combinations of arguments

to the min and max functions.

FMin (s §) < FMAX(s, 5) (24)
o f£’(s)é2> I A O LA W
“ (m’(AT (\fj Gl e)7

Vi,j € [1,...,n], fi(s) #0,fj(s) #0 (29)

NEEW O\
(f{(S) f;<s>> +<|f’ RRFT) y)zo

Vi,j € [15"'>n]afi()750 f()750 (26)
RO OIS
HOMNEOIN +<|f’ IRAIAC ;)20
Vi€ [1yn]yj € [i 4+ 1,0sm], fl(s) # 0, fi(s) £0 (27)

This gives a set of downward-facing parabolas in $ horizon-
tally centered around the origin. Each parabola is positive
within an interval around 0, which is the interval the feasible
velocities may lie in. The positive bound of the interval can
be found by setting the parabola equation to zero.

" s f// s ‘max qmax
_ fz/() _ J/() 8 + qz, + Y :0 (28)
fi(s) fi(s) THOIAO)]
R
O] T e 29,
IO HO)
OO

The interval of feasible path velocities s is defined by the
intersection of the feasible intervals of all parabolas. Thus, the
upper bound for the path velocity is the minimum of all upper
bounds given in Eq. [29] Combining this with the case from
Eq. the constraint on the path velocity caused by joint
acceleration limits is given by

§ < 8ce () (30)
with
11 (s) = min
q’;nax d;nax .
min [HOIRRFOI min P
i€[1,...,n] 76 IO et \ ()]
jEli+1,...,n] fi(s) fi(s) f1(s)=0
f{(s)sﬁO fi'(s)#0
(5)760
f;/(s) O]
716 f Ty 70
(€29)
B. Joint Velocity Limits
Constraints on the joint velocities are given as
—§;" < g < @ Vi € [1,...,n] (32)

Plugging Eq. [I1] into Eq. [32] yields

max < f()S < qzmax Vi € [17771] (33)

If f/(s) = 0, then Eq. is always satisfied. Otherwise,
because s > 0, Eq. B3] is equivalent to

max

@
= THG)

Thus, the constraint on the path velocity caused by limits
on the joint velocities is given by

Vie(l,..,n] (34)

§ < $0%(s) (35)

with
max — 36
)= i, .

fi(s)#

We will make use of the slope of this limit curve in the
phase plane, which is the derivative by s given by

d . max _ IIlaXf//() . arg min q7IIlaX

%Svel (S) - m ‘e i€(l,...,n] |fz(>|
740

VI. ALGORITHM

(37

Figure [2| shows the s-s5 phase-plane. The start point is in
the bottom-left corner and the end point in the bottom-right
corner. The two limit curves limiting the path velocity, which
are caused by joint acceleration and joint velocity constraints
respectively, are shown. The trajectory must stay below these
two limit curves. We want to find a trajectory that maximizes
path velocity s at every point along the path. While not on
the limit curve, the path acceleration must be at one of its
limits, i.e. Syin OF Smax. Thus, at every point on the phase-
plane below the limit curve there are two possible directions
to move in: one applying minimum acceleration and the other
one applying maximum acceleration. The algorithm needs to
find the switching points between minimum and maximum ac-
celeration. In Figure [2| switching points are marked by arrows.
Switching points from minimum to maximum acceleration
must be on the limit curve, because otherwise we could find
a faster trajectory above the solution trajectory [3].

The high-level algorithm is described below. It differs
slightly from [5]. We integrate backward from the end point
as the very last step. This makes the algorithm slightly simpler
to implement, because while integrating forward we can never
intersect with another trajectory part and while integrating
backward we can never reach the limit curve. Section
gives some more implementation details. The numbers in
Figure [2] correspond to the steps of the algorithm.

1) Start from the start of the path, i. e. s =0 and s = 0.

2) Integrate forward with maximum acceleration § =

§max (g $) until one of the following conditions is met.
e If s > sy, continue from the end of the path, i. e.
s=sy and $ =0 and go to step 5.
o If $ > $02%(s), go to step 4.
o If § > §T3%(s), go to step 3.

vel

2) ‘\\ ”‘
s 2 JRN gy
A T
bt
4 T TT acceleration limit curve
7777777777 velocity limit curve
1) time-optimal trajectory

Fig. 2.

3) Follow the limit curve $%23*(s) until one of the following
conditions is met.

o 1 SR < gmx(s), go back to step 2.
o If w > dLlsgIVﬁX(s), go to step 4.

4) Search along the combined limit curve for the next
switching point. See section Section
« Continue from the switching point and go to step 5.
5) Integrate backward with minimum acceleration until the
start trajectory is hit. (If the limit curve is hit instead,
the algorithm failed. We used this condition to detect
failures shown in Table [I) The point where the start
trajectory is intersected is a switching point. Replace
the part of the start trajectory after that switching point
with the trajectory just generated.
« If we transitioned into this step from step 2, halt.
The start trajectory reached the end of the path with
s =sy and § = 0.
o Otherwise, continue from the end of the start tra-
jectory, which is the switching point found in step
4, and go to step 2.

VII. SWITCHING POINTS

With the exception of a finite number of points, at every
point on the acceleration limit curve there is only a single
feasible acceleration. If this acceleration leads into the feasible
region, the point on the limit curve is called a trajectory source
[6]. If this acceleration leads out of the feasible region, the
point is called a trajectory sink. We define trajectory source
and sink similarly for the velocity limit curve if all feasible
accelerations lead into or out of the feasible region. If the
interval of feasible accelerations allows following the velocity
limit curve, we call the point singular.

A switching point along a limit curve, is a point where
the limit curve switches from being a trajectory sink to being
a trajectory source or to being singular. The limit curve is
the curve given by the minimum of the acceleration limit
curve and the velocity limit curve. A switching point of the
acceleration or velocity limit curve is a switching point of the

S

Phase-plane trajectory

limit curve if the limit curve the switching point is on is the
lower one. The following two sections deal with finding the
switching points on both, the acceleration and velocity limit
curves.

A. Caused by Acceleration Constraints

This section describes how to find switching points along the
path velocity limit curve $22*(s) caused by constraints on the
joint accelerations.

We distinguish three cases of these switching points, de-
pending on whether the curve is continuous and/or differen-
tiable at the switching point.

1) Discontinuous: 35:2%(s) is discontinuous if and only
if the path curvature f”(s) is discontinuous [7]. For a path
generated as described in Section the discontinuities are
exactly the points where the path switches between a circular
segment and straigt line segment. If the path’s curvature f”(s)
is continuous everywhere, this case of switching points does
not happen.

At a discontinuity s there are two path velocity limits
smax(g—) and $M2%(sT). The switching point is always at
the smaller one of the two. If the discontinuity is a positive
step and there is a trajectory sink in the negative direction of
the discontinuity, then the discontinuity is a switching point.
Equally, if the discontinuity is a negative step and there is a
trajectory source in the positive direction of the discontinuity,
then the discontinuity is a switching point. Or more formally,

a discontinuity of $2%(s) is a switching point if and only if

acc acc

($nlax(8—) < émax(s+)

A ETE (57, S (57)) 2 ism“(s-))

yCacc — dS acc

v (s'mw(s—) > gmax(gt)

acc acc

A gmaaz(s—q— Smax(s+)) < iémax(s-ﬁ-)) (38)

) “acc —_ dS acc

2) Continuous and Nondifferentiable: The original paper
[5] introducing the approach claims that every point along

=

S

Fig. 3. Minimum and maximum acceleration trajectories near a switching
point where the limit curve is nondifferentiable

the limit curve only has a single allowable acceleration with
gmin(g gmax(g)) — gmax(g gmax(g)) However, this is inac-
curate. As [[6] notes, there are points along the limit curve
where there is an interval of allowable accelerations, i. e.
gmin(g gmax(g)) < gmax(g gmax(g)) These points are called
critical points in [8]] and zero-inertia points in [7]]. At these
points the limit curve is continuous but nondifferentiable [8].
As noted in [6], a neccessary condition for such switching

points is
(39)

For a path generated from waypoints as described in Sec-
tion[[V] points satisfying Eq.[39)can be easily calculated. There
are at most n per circular segment.

[6] does not note that choosing the correct acceleration at
such a switching point might be an issue. [6] proposes to
integrate backward from such a switching point with minimum
acceleration and integrate forward with maximum acceleration
as usual. [8]] notices that the acceleration at such a switching
point needs special consideration. [8]] notes that the maximum
or minimum acceleration cannot always be followed, because
they would lead into the infeasible region of the phase plane.
[8]] calls such a point a singular point and proposes to follow
the limit curve tangentially. However, both [6] and [8]] are in
error.

Figure [3 shows a switching point at a point where the limit
curve is nondifferentiable. At the switching point two arrows
indicate the direction of motion in the phase plane when
applying minimum or maximum acceleration, respectively. In
the feasible region of the phase plane gray curves visual-
ize two vector fields. They show minimum- and maximum-
acceleration trajectories. Minimum-acceleration trajectories
are dashed, maximum-acceleration trajectories are solid. In
the case shown here, if integrating backwards with minimum
acceleration, the infeasible region would be entered. Thus,
according to [8] we would have to follow the red limit
curve tangentially backwards from the switching point. For
integrating forward [6] and [8] propose to follow the upward
arrow. However, both of these motions are not possible, as
they would not move along the vector field sourrounding the
switching point. Zero is the only acceleration at the switching
point that conforms with the vector field around it, resulting
in a trajecory moving horizontally in the phase plane.

We claim that the optimal acceleration is zero at every such

q2

) :

f g3

Fig. 4. Joint acceleration space for n=3 with box constraints and a trajectory
for a switching point that meets the limit curve tangentially.

switching point. We leave the proof for future work, but all of
our experimental data supports this claim.

In order for the zero acceleration to be feasible, the limit
curve must switch from a negative to a positive slope at the
switching point. We claim that the limit curve switching from
a negative to a positve slope is a necessary and sufficient con-
dition for a switching point at a point of nondifferentiability
of the limit curve. Together with the sufficient condition stated
in Eq. [39] this allows for an explicit enumeration of all such
switching points.

3) Continuous and Differentiable: According to the follow-
ing lemma this case does not exist.

Lemma 1: 1If only joint accelerations are constrained, the
path is piece-wise coplanar, and the curvature f”(s) is dis-
continuous at the points where the pieces are stitched together,
then there are no switching points at which the limit curve is
continuous and differentiable.

Proof: Before the switching point the path acceleration
is at the lower limit. This implies that at least one joint is
at its acceleration limit. After the switching point the path
acceleration is at its upper limit. This implies that at least one
joint distinct from the previous one is at its acceleration limit.
At the switching point both joints are at their acceleration
limit. The limit curve, the phase-plane trajectory and the joint-
space trajectory are continuous and differentiable near the
switching point. One joint approaches its acceleration limit
at the switching point and then stays at the limit. Another
distinct joint is at its acceleration limit and leaves the limit
at the switching point. Figure [4] shows the joint acceleration
space for a 3-joint system with the joint acceleration limits
shown as a box. At the switching point two joint are at
their acceleration limit. Thus, the trajectory is on an edge of
the box at the switching point. Before the switching point
the trajectory stays on one surface of the box, approaches
the edge tangentially. After the switching point the trajectory
leaves the edge tangentially while staying on another surface
of the constraint box. This trajectory lives in at least a three-
dimensional subspace of the joint acceleration space. There is
no two-dimensional subspace that includes the trajectory in the
vicinity of the switching point. Because the path is piecewise
planar, the accelerations in joint space are also piecewise
planar. Because there is no trajectory in joint acceleration
space that cannot be included in a two-dimensional subspace, a
switching point where the limit curve is differentiable does not
exist. The only case where such a switching point can exist

is where two planar parts of the path are stitched together.
However, these points are those where the curvature f”(s) is
discontinuous and thus the limit curve is discontinuous. W

B. Caused by Velocity Constraints

This section describes how to find switching points along the
path velocity limit curve $.*(s) caused by constraints on the
joint velocities. We distinguish two cases of these switching
points, depending on whether §™" (s, §M8%()) is continuous.
1) Continuous: s is a possible switching point if, only if

amin (5

3 $o () = ié’mx(s)

s Zvel ds vel

We search for these switching points numerically by stepping
along the limit curve until we detect a sign change. Then we
use bisection to more accurately determine the switching point.
See also Section

2) Discontinuous: f!'(s) being discontinuos is a necessary
condition for §™i"(s, $Ma*(s)) being discontinuos. s is a

possible switching point if and only if

(40)

(émin(sfysmax(sf)) Z iémax(sf))

vel ds ~acc (41)
amain max d smax
A (5 (5+7 Svel (S+)) < %Sacc (5+)) (42)

VIII. NUMERICAL CONSIDERATIONS

When doing floating-point calculations we must accept ap-
proximate results. However, we cannot accept the algorithm
failing completely due to numerical inaccuracies. We now
describe how numerical inaccuracies can make the algorithm
described in section Section fail and the measures we
have taken to avoid that. None of the previous papers on this
approach [5H9] have dealt with numerical issues.

A. Integration

The algorithm described in Section assumes that we can
exactly integrate the trajectory. Under this assumption it is
impossible to hit the limit curve at a trajectory source when
integrating forward. However, as we have to do the integration
numerically with some non-zero step size, it is not exact. This
can lead to the limit curve being hit at a trajectory source.
Figure [5] shows an example of the trajectory hitting the limit
curve at a trajectory source. The figure shows the limit curve
together with an accurate trajectory generated using a small
step size and a not-so-accurate trajectory generated with a
10 times larger step size (1 ms). The trajectories enter the
figure on the left at minimum acceleration until they touch
the limit curve. Then they switch to maximum acceleration.
In the following the accurate trajectory gets close to the limit
curve but does not hit it. The inaccurate trajectory, however,
because of the larger step size, misses the bend shortly before
the limit curve and hits the limit curve. According to the
algorithm described in Section[VI|and the algorithms described
in previous work [5, 16, [8, 9] we would have to stop the
forward integration, search for the next switching point along
the limit curve and integrate backward from there until we hit
the forward trajectory. However, when integrating backward

limit curve
accurate trajectory
inaccurate trajectory +

S

(a) failure without source/sink check

limit curve
accurate trajectory
inaccurate trajectory +

S

(b) success with source/sink check

Fig. 5. Dealing with integration inaccuracies

from the next switching point we might hit the limit curve
instead of the forward trajectory. This is because the algorithm
relies on the fact that there are no trajectory sources between
where the forward trajectory hits the limit curve and the next
switching point, which is not the case if the forward trajectory
hits the limit curve at a trajectory source. To deal with this
issue, we determine the intersection point with the limit curve
by bisection and then check whether this point is a trajectory
source by comparing the slope of the limit curve with the
slope of the maximum-acceleration trajectory. Figure [5] shows
the result of this measure. The inaccurate trajectory does not
follow the accurate one exactly, but it does not stop when the
limit curve is hit. Thus the algorithm succeeds.

Note that although the smaller step size solved the problem
in the example shown in Figure[5] it does not do so in general.
In general, a smaller step size or a better integration method
only make it less likely that the limit curve is hit at a trajectory
source. Thus, the method described above is necessary to
ensure completeness of the algorithm.

B. Switching Point Search

All previous work at least partially relies on numerical search
to find switching points, but none notes the potential issues
caused by using it. We also use numerical search, but only
along the velocity limit curve. If we only had acceleration
constraints, numerical search would not be necessary. We try
to avoid numerical search as much as possible, because it

Fig. 6. 200 start and goal locations
Failure rate
Time Computation Execution without with
Step Time Time source/sink check
10 ms 02s 474 s 13 % 0%
1 ms 09 s 471s 3% 0 %
0.1 ms 31.8 s 470 s 0 % 0 %
TABLE I

RESULTS FOR VARYING TIME STEP

is slower, less accurate and might make the algorithm fail.
Our algorithm relies on the fact that we can find the next
switching point along the limit curve. However, by searching
numerically and stepping along the limit curve, we could
theoretically miss a switching point and find one that is not the
next one. The algorithm could potentially be adapted to work
with any switching point without requiring it being the next
one. However, during our experiments we did not encounter a
failure caused by missing a switching point.

IX. EXPERIMENTAL RESULTS

We evaluated our approach by generating trajectories for
a 7-DOF robot arm that is given the task of picking and
placing a bottle from or onto a shelf or table. The results are
averages over 100 pick-and-place operations. For each pick-
and-place operation we randomly selected a pick and a place
location. Figure [6] shows the 200 pick and place locations.
We used a bidirectional RRT to plan a configuration space
path for the arm. Each pick-and-place operation constists of 3
path segments: from the initial arm configuration to the pick
configuration, to the place configuration and back to the intial
configuration. In our evaluation we ignore the finger motion
necessary to grasp the object. The robot shown in Figure [6uses
only its left arm. The arm configuration shown is the inital arm
configuration, which is reached at the beginning and end of
every pick-and-place operation. The paths generated by the
RRT planner are shortened using random short cutting. The
result are paths given by waypoints at most 0.1 apart. Here
we evaluate the trajectory generation from these waypoints.
This method of generating example paths is very real-world
oriented and does not allow us to handcraft waypoints until
the trajectory generation accidentally succeeds.

Table[l|shows computation and execution times for different
time steps used for the integration of the trajectory. The

computation time was achieved on a single core of an Intel
Core i5 at 2.67 Ghz. Smaller time steps lead to a longer
computation time and a slightly closer to optimal path. What
is not shown here is that a smaller step size also leads to
the constraints being satisfied more accurately. Related to that
is the fact that a larger time step makes the algorithm more
likely to fail if the counter measures for numerical inaccuracies
described in Section [VIII-A] are omitted. Our algorithm is
robust enough to successfully generate trajectories for 100
random pick-and-place operations using different time steps.
We also ran our algorithm on a real-robot arm following
a path defined by hand-crafted waypoints. A video of this
and a few example pick-and-place operations is available at
http://www.golems.org/node/1570.

X. CONCLUSION

We presented an algorithm to follow a path in time-optimal
manner while satisfying joint acceleration and velocity con-
straints. We added blends to a list of waypoint in order to
be able to use the output of standart path planners. Our
improvements to existing work make the algorithm more
robust and less likely to fail. We showed the robustness of
our implementation by following paths planned by an RRT
planner for 100 random pick-and-place operations.

ACKNOWLEDGEMENTS

This work is supported by Toyota Motor Engineering &
Manufacturing North America (TEMA). We appreciate the
great contribution to our robotics research and education.

REFERENCES

[1] JJ. Craig. Introduction to Robotics: Mechanics and
Control (3rd Edition). Prentice Hall, 2004.

[2] B. Siciliano, L. Sciavicco, and L. Villani. Robotics:
modelling, planning and control. Springer, 2009.

[3] T. Kunz and M. Stilman. Turning Paths Into Trajectories
Using Parabolic Blends. Technical Report GT-GOLEM-
2011-006, Georgia Institute of Technology, 2011.

[4] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-optimal
control of robotic manipulators along specified paths. The
Int. Journal of Robotics Research, 4(3):3—-17, 1985.

[5] K. Shin and N. McKay. Minimum-time control of robotic
manipulators with geometric path constraints. IEEE Trans-
actions on Automatic Control, 30(6):531-541, 1985.

[6] F. Pfeiffer and R. Johanni. /A concept for manipulator
trajectory planning, [EEE Journal of Robotics and Au-
tomation, 3(2):115-123, 1987.

[7] J.-J.E. Slotine and H.S. Yang. Improving the efficiency
of time-optimal path-following algorithms. IEEE Trans-
actions on Robotics and Automation, 5(1):118-124, 1989.

[8] Z. Shiller and H.H. Lu. Computation of path constrained
time optimal motions with dynamic singularities. Journal
of dynamic systems, measurement, and control, 114:34,
1992.

[9] L. Zlajpah. |On time optimal path control of manipulators
with bounded joint velocities and torques. In Proc. of
IEEE Int. Conf. on Robotics and Automation, 1996.

http://www.golems.org/node/1570
http://hdl.handle.net/1853/41948
http://hdl.handle.net/1853/41948
http://ijr.sagepub.com/content/4/3/3.short
http://ijr.sagepub.com/content/4/3/3.short
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1104009
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1104009
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087090
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087090
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=88024
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=88024
http://link.aip.org/link/?JDSMAA/114/34/1
http://link.aip.org/link/?JDSMAA/114/34/1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=506928
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=506928

	Introduction
	Related Work
	Contribution
	Path Preprocessing
	Reduction to One Dimension
	Joint Acceleration Limits
	Joint Velocity Limits

	Algorithm
	Switching Points
	Caused by Acceleration Constraints
	Discontinuous
	Continuous and Nondifferentiable
	Continuous and Differentiable

	Caused by Velocity Constraints
	Continuous
	Discontinuous

	Numerical Considerations
	Integration
	Switching Point Search

	Experimental Results
	Conclusion

