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Abstract. RRTs are a popular method for kinodynamic planning that
many consider to be probabilistically complete. However, different varia-
tions of the RRT algorithm exist and not all of them are probabilistically
complete. The tree can be extended using a fixed or variable time step.
The input can be chosen randomly or the best input can be chosen such
that the new child node is as close as possible to the sampled state ac-
cording to the used distance metric. It has been shown that for finite
input sets an RRT using a fixed step size with a randomly selected input
is probabilistically complete. However, this variant is uncommon since it
is less efficient. We prove that the more common variant of choosing the
best input in combination with a fixed time step is not probabilistically
complete.

1 Introduction

Rapidly-Exploring Random Trees (RRTs) as introduced by LaValle and Kuffner
[11,13,14,15,16] are a popular method for geometric and kinodynamic planning.
Many, e.g. [4,5,7], consider RRTs to be a synonym for probabilistic completeness.
However, this is not necessarily the case. Kinodynamic RRTs [13,14,15,16] only
have the property of probabilistic completeness under a set of assumptions, which
depend on implementation details that are left open by the RRT algorithm.
These details govern how the time step and the input are chosen to extend the
tree from the selected node. While it has been shown that the RRT algorithm for
kinodynamic planning is probabilistically complete with a fixed time step and
a random control input [15, 16], we now describe that a more commonly used
variant is not probabilistically complete in the general case. This variant uses a
fixed time step and chooses the best control input for the extension of the tree
from the selected node. This variant is for example used in [1, 2, 4, 6, 8, 18].

Even though we prove this variant to not be probabilistically complete in
general, it could potentially be made probabilistically complete by introducing
additional requirements on the system dynamics and/or the used distance metric.
In fact, one of the goals of this paper is to spur further research on the exact
conditions under which RRTs are probabilistically complete.



1.1 Problem Formulation

In this analysis, consider a system with differential constraints given as

ẋ = f(x,u) (1)

with state x ∈ X and input u ∈ U .
The set of all collision-free states is given as Xfree ⊆ X . An initial state

xinit ∈ Xfree and a goal set Xgoal ⊆ Xfree are given. We want to find a duration
T and an input trajectory u(t) such that the differential constraints of Eq. 1 are
satisfied for all 0 ≤ t ≤ T , the trajectory is collision free with x(t) ∈ Xfree for all
0 < t < T , x(0) = xinit and x(T ) ∈ Xgoal.

1.2 Kinodynamic RRT Algorithm

A distance function ρ : X × X → [0,∞) is given, which establishes a concept of
closeness between states and is used by the RRT algorithm to extend the tree.
Most commonly the Euclidean distance is used.

Algorithm 1 shows the construction of an RRT. Lavalle and Kuffner intro-
duced different variants of the RRT algorithm. All RRT variants grow a tree
from xinit by sampling the state space (line 4) and then selecting the node in
the tree closest to the sampled state according to the provided distance function
(line 5). This is visualized in Fig. 1(a). The NewState function (line 6) extends
the tree from the selected node by applying some input u ∈ U for some time
step ∆t. Variants of the RRT algorithm differ in how ∆t and u are chosen.

Algorithm 1: BuildRRT(xinit,Xgoal)

1 V ← {xinit};
2 E ← ∅;
3 while V ∩ Xgoal = ∅ do
4 xrand ← SampleState();
5 xnear ← NearestNeighbor(V, xrand);
6 (xnew, unew,∆t)← NewState(xnear, xrand);
7 if CollisionFree(xnear, xnew, unew,∆t) then
8 V ← V ∪ {xnew};
9 E ← E ∪ {(xnear, xnew, unew,∆t)};

10 return (V,E);

Early work on RRTs [13, 14] used a fixed time step ∆t and chose the best
input u. Each input u is associated with a successor state, in which the system
will end up when applying the input for a fixed time ∆t from the current node.
”Best input” refers to the input whose successor state is closest to the sampled
state. This is visualized in Fig. 1(b) and formalized in Algorithm 2.

The Simulate function used in Algorithm 2 returns a successor state by simu-
lating the system forward by a given time step ∆t using a given constant input u.
I. e. it returns x(∆t), such that the differential equation ẋ = f(x(t),u) with the
initial condition x(0) = xnear is satisfied.
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Fig. 1. Visualization of best-input RRT variant. The shown system is a double inte-
grator with ẋ1 = x2, ẋ2 = u and finite input set U .

Algorithm 2: NewState(xnear, xrand)
(using fixed time step and best-input extension)

1 unew ← arg minu∈U{ρ(Simulate(xnear,u,∆t),xrand)};
2 xnew ← Simulate(xnear,unew,∆t) ;
3 return (xnew, unew,∆t);

If U is finite, the best input in line 1 of Algorithm 2 can be chosen by
forward simulating all inputs and evaluating all resulting successor states. If U
is continuous, this is not possible. Instead an analytical method must be used
for an exact solution. However, often the best input is approximated instead by
choosing the best one out of a finite number of sampled inputs.

Later, [15, 16] generalized the RRT algorithm and gave choices for the im-
plementation of the NewState function. The time step ∆t can either be fixed or
variable and either the best or a random input u can be chosen. Algorithm 1
is general enough to allow all these variations. However, when the time step is
fixed, the algorithm and data structures can be simplified by leaving out ∆t.

1.3 Probabilistic Completeness of Kinodynamic RRTs

An algorithm is probabilistically complete if the probability that an existing
solution is found converges to 1 as the number of iterations grows to infinity [17].

It has been shown in [15,16] that if U is finite, ∆t is fixed and u is chosen at
random, the RRT algorithm is probabilistically complete. However, choosing u
randomly may not result in the RRT exploring the state space rapidly.



Fixed ∆t Variable ∆t

Random u
Probabilistically complete

(if U finite) [15, 16]
?

Best u
Not probabilistically complete

[this paper]
?

Table 1. Probabilistic completeness of different kinodynamic RRT variants

In contrast, the preliminary RRT variant introduced in [13, 14] also uses
a fixed time step ∆t but chooses the best input u. The very first paper on
RRTs [13] but none of the later papers [14, 15, 16] claimed this variant to be
”probabilistically complete under very general conditions”. We show that this
variant is not probabilistically complete.

Restricting the RRT to a fixed time step renders the algorithm unable to find
solutions that do not consist of ∆t long segments of constant input. However,
even if a solution with ∆t long segments of constant input exists, the RRT with
best-input extension might never find it.

This section up until here is summarized in Table 1.

As mentioned in Sec. 1.2 the best input out of a continuous input set is
often approximated in practice by sampling a finite set of inputs and choosing
the best input out of the finite set. This approximation may render the RRT
algorithm probabilistically complete because of the added randomness. However,
an algorithm that is probabilistically complete only thanks to approximation
errors is likely to not be very efficient.

1.4 RRTs Using Steering Methods

A steering method is able to exactly connect any two states x1, x2 ∈ X with
‖x1− x2‖ < ε for some ε > 0 while ignoring obstacles. Computationally efficient
steering methods are not available for general dynamical systems. They are only
available for a few simple systems, e.g. Dubin’s car [3, 17] and a set of double
integrators [12]. A steering method in combination with a collision checker yields
what is called a local planner in the probabilistic roadmap literature [10].

To be generally applicable, kinodynamic RRTs as introduced in [13,14,15,16]
do not require a steering method. Instead, they only rely on an incremental
simulator that can simulate the system forward for a given input and time step.
However, there are RRT algorithms that make use of a steering method. These
are not the topic of this paper. However, we want to briefly mention them in this
section to make the differences clear and to emphasize that the negative result
on probabilistic completeness presented in this paper does not apply to those.



A steering method usually returns a trajectory that minimizes some cost, e. g.
time. When using a steering method, the distance function used by the RRT
is also based on this steering method by defining the distance as the optimal
cost to move between two states ignoring obstacles. Karaman and Frazzoli [9]
proved that an RRT* using an optimal steering method in combination with a
distance function based on that steering method is probabilistically complete.
Since an RRT* uses the same vertices as an RRT, the RRT algorithm is also
probabilistically complete under these assumptions.

Geometric RRT planners [11] that use a Euclidean distance function and
connect configurations with a straight line in configuration space can also be
viewed as using a steering method and fit into the framework assumed in [9].
The straight line is the trajectory that minimizes path length and the distance
function returns that path length.

Whereas RRT planners using steering methods have been most successful in
practice and come with guarantees on probabilistic completeness, not requiring
a steering method was one of the selling points when the RRT was initially
introduced.

2 Proof

We demonstrate that a kinodynamic RRT with fixed time steps and best-input
extension is not generally probabilistically complete. The proof uses a counter
example.

The RRT variant we are considering here selects both the node and the input
by evaluating closeness to the sampled state according to the provided distance
metric ρ. In order for a node to get selected it must be the closest one to the
sample. The same goes for the input: In order to be selected, the successor
state resulting from the input must be the closest one to the sample among
all the successor states resulting from applying inputs from the current node.
Even though for every node and for every input there exist states such that the
considered node or the considered successor state is closest, in order for a specific
input to be selected for extension from a specific node, more is required: (1) The
specific node must be the closest to the sample and (2) among all the successor
states resulting from applying inputs from the specific node, the state resulting
from the specific input must be the closest. We provide an example case in which
there is no state that could be sampled that satisfies both requirements.

The system used as counter example is described in Sec. 2.1. In Sec. 2.2 we
present a possible intermediate tree and in Sec. 2.4 we demonstrate that the
considered RRT variant cannot explore the full reachable state space from that
intermediate tree because there exists a node and an input such that no sampled
state results in selecting both of them. Sec. 2.3 provides some background of
Voronoi regions, which are used in the proof in Sec. 2.4.



2.1 Counter Example

Consider the following system with a 2-dimensional state vector [x1, x2], a scalar
input u and no obstacles.

ẋ1 = u (2)

ẋ2 = u2 − 3 (3)

with |u| ≤ 1 (4)

Note that −4 ≤ ẋ2 ≤ −2 and thus the system is always moving in negative
direction along the x2 axis. The set of possible successor states after a time step
of ∆t from the current state is a segment of a parabola. Fig. 2 shows the set
of states reachable within 3∆t from some initial state xinit assuming constant
input during a fixed time step ∆t.

Observe that the fact that the system is restricted to always move in the
negative direction of the x2 axis makes it impossible to revisit an earlier state.
Also, all states at t = ∆t and t = 2∆t are only reachable at one specific point
in time.

Our counter example uses a Euclidean distance for the RRT algorithm.
xinit

t = 0

t = ∆t

t = 2∆t

t = 3∆t

x1

x2

Fig. 2. States reachable from xinit



2.2 Intermediate Tree

A probabilistically complete algorithm must be able to explore the whole reach-
able space from any intermediate tree that the algorithm might produce. Fig. 3
shows what the RRT could look like after two extensions from the initial state.
The new nodes xa and xb sit at the ends of the parabola segment that represents
the reachable space at time ∆t.

If the algorithm was probabilistically complete, it would still be able to ex-
plore the whole reachable space. However, we show that given this tree config-
uration, the RRT is never going to explore the state space areas shown in gray,
even though they are reachable by the system. The parabola segment at t = ∆t
is never explored except its endpoints. The unexplored space at t = 2∆t and
t = 3∆t is just the result of the unexplored parabola segment at t = ∆t, since
getting there requires moving through a state in the interior of the parabola
segment. Also, note that the unexplored space at t = 2∆t and t = 3∆t does not
play a role for our proof, since the inability of the RRT to explore the interior of
the parabola segment is enough for it to not be probabilistically complete. Part
of the unexplored space at t = 3∆t could potentially still be explored at t = 4∆t,
since it overlaps with the reachable space at t = 4∆t, which is not shown in the
figure.

xinit

xa xb

t = 0

t = ∆t

t = 2∆t

t = 3∆t

x1

x2

Fig. 3. RRT after two extensions. Gray areas of the state space are never explored.



2.3 Background: Voronoi Regions of Sites

Even though Voronoi regions are a well-known concept, we are going to review
them in this section since our proof in the next section uses the less common
concept of a Voronoi region of an infinite set of points instead of only Voronoi
regions of single points.

Consider k subsets Si ⊂ X with i = 1 . . . k such that ∀i 6= j : Si ∩ Sj = ∅.
The sets Si are called sites. The Voronoi region of site Si is the set of all points
that is closer to Si according to our distance metric ρ than to any other site. Or
more formally

Vor(Si) = {x ∈ X | ∃p ∈ Si ∀j = 1 . . . k ∀q ∈ Sj : ρ(x, p) ≤ ρ(x, q)} (5)

Note that in the common case all sites Si only contain a single point, but we
are also going to make use of a site Si containing infinitely many points. Also
note that Vor(Si) does not only depend on Si but on all Sj with j = 1 . . . k.
A Voronoi diagram is a tuple (Vor(Si))i∈{1...k} of all the k Voronoi regions.

2.4 Non-Exploration of Parabola Segment

We now look closer at t = ∆t to determine why the interior of the parabola
segment is not explored by the RRT algorithm. As mentioned in Sec. 2.1, because
the example system is constrained to always move in negative x2 direction, the
states on the parabola segment can only be reached at time t = ∆t. Thus, the
parabola segment can only be explored by extending the tree from the root node.

To extend the tree to the parabola segment, the random sample of the RRT
algorithm must fall in the Voronoi region of the root node. The Voronoi regions
of the three tree nodes (which are the Voronoi sites here) are shown in Fig. 4.
The root node’s Voronoi region is shaded with lines.

Now assume the RRT samples somewhere in the root node’s Voronoi region
and thus selects the root node as the nearest neighbor for extension. The next
step is to choose the input to use to extend the tree from the root node. The
RRT variant we are considering chooses the input such that the distance of the
new child node to the sampled state is minimized. Similar to the way the closest
node to the sample gets picked by the RRT algorithm, now the closest successor
state of the selected node gets picked. We will now look at Voronoi regions of
different successor states of the root node. We consider three sites and their
Voronoi regions. Two sites are defined to be the two end points of the parabola
segment and the third site is the entire rest, the interior, of the parabola segment.
Note that the latter Voronoi site consists of infinitely many states. The three
Voronoi regions of those sites are shown in Fig. 5. The Voronoi region of the
interior of the parabola segment is shaded with dots.

For the RRT to explore the interior of the parabola segment, the sampled
state must lie in both, the Voronoi region of the root node and the Voronoi
region of the interior of the parabola segment. However, as Fig. 6 shows, the two
Voronoi regions don’t overlap. Thus, the RRT cannot explore the interior of the
parabola segment and the algorithm is not probabilistically complete.



xinit

xa xb

Vor({xa}) Vor({xb})

Vor({xinit})

Fig. 4. Voronoi diagram of the three tree nodes, i. e. of the three Voronoi sites S1 =
{xinit}, S2 = {xa} and S3 = {xb}. The root node’s Voronoi region is shaded with lines.

xa xb

I

Vor({xa}) Vor({xb})

Vor(I)

Fig. 5. Voronoi diagram of the successor states of the root node. Three Voronoi sites
are considered: the two endpoints of the parabola segment, S1 = {xa} and S2 = {xb},
and its interior S3 = I. The Voronoi region of the interior I of the parabola segment
is shaded with dots.

xinit

xa xb

Fig. 6. Combining the two Voronoi diagrams from Fig. 4 and 5: Voronoi regions of the
root node (lines) and the interior of the parabola segment (dots). They do not overlap.
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xa xb

Fig. 7. Points within the root node’s Voronoi region are closer to either one of the
endpoints of the parabola segment than to its interior.

Fig. 7 provides a slightly different illustration of the same fact that every
sample in the root node’s Voronoi region is closer to one of the endpoints of the
parabola segment than to its interior. The figure shows three exemplary points
within the root node’s Voronoi region. The dashed circles around them show
that the closest point on the parabola segment is always one of the endpoints.

2.5 Discrete Inputs

Above proof can easily be extended to the discrete case. For example we can
replace the entire interior of the parabola by a single input that leads to a
state in the center of the parabola segment. This means Eq. 4 is replaced by
u ∈ {−1, 0, 1}. The voronoi regions for this discrete counter example are shown
in Fig. 8. Similarly to the continuous case, the zero-input state shown in gray
will never be explored.

However, in the discrete-input case the RRT algorithm can be easily adapted
to be probabilistically complete by making sure that no input is applied to the
same node twice [17]. This forces the RRT to eventually try to expand all inputs
of a node. This adaption is not possible in the continuous-input case.

xinit

xa xb

Fig. 8. Discrete case: Voronoi regions of the root node (lines) and the zero-input
state (dots)



3 Conclusion

We showed that a common variant of kinodynamic RRTs is not probabilisti-
cally complete. This contradicts general perception that RRTs are inherently
probabilistically complete. Instead, probabilistic completeness depends on the
implementation details of the RRT, the specific problem and/or the chosen dis-
tance metric. Whether the RRT variant considered here can be made probabilis-
tically complete by introducing constraints on the problem or distance metric is
left open for further research. The question whether kinodynamic RRTs with a
variable time step are probabilistically complete is also left open.

Even though RRTs were initially designed for not requiring a steering method,
the finding in this paper provides an argument for using RRTs with a steering
method as we do in [12].
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