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Generation of Diverse Paths in 3D Environments

Ana Huaméan Quispe

Abstract—In this paper we propose a deterministic algorithm
to produce a set of diverse paths between a given start and
goal configuration in 3D environments. These diverse paths have
the following properties: 1) They are bounded in length and 2)
They are non-visibility-deformable into one another. Maintaining
multiple path alternatives is important in practical applications
such as planning in dynamic environments, in which a path may
unexpectedly become infeasible due to unforeseen environmental
changes. We present our approach, the distance cost considered
(based on the path deformability concept previously introduced
in [11]) and finally show results of simulated experiments that
exemplify the effectiveness of our algorithm.

I. INTRODUCTION

Finding a single path between a goal and start configuration
is a canonical motion planning problem. However, there are
many situations in which more than one path must be consid-
ered. For instance, in multi-robot mapping applications, it is
reasonable to design different trajectories for each agent such
that they cover diverse regions of free space [3]. Other ap-
plications include motion planning in dynamic environments,
in which considering multiple paths can be useful if one of
them becomes infeasible due to unexpected changes in the
environment. In general, if a robotic agent is provided with
a diverse set of paths, it has the flexibility to choose what
option is best at any given situation. The question then arises
as to how to classify these paths such that they are as different
(diverse) as possible from one another.

Homotopy is a classical approach to classify paths. Two
paths, having the same start and goal configuration, belong
to the same homotopy class if they can be continuously
deformed into one another. Different homotopy classes may
arise due to obstacles in the environment. Fig. 2(a) shows a
2D scenario with an obstacle and two paths. These two paths
belong to different homotopic classes, since there is no smooth
deformation that can convert one into the other.

Intuitively, we see that 2D obstacles arise different homo-
topy classes. This, however, is not the general case in 3D
environments. Consider Fig.2(b), depicting one obstacle and
four different paths. These paths belong to the same homotopy
class since there exists a deformation (albeit complex) that can
turn any of these paths into another. In practical applications,
however, we might want to differentiate between paths that
are easily deformable [11], for which the homotopy criterion
may not be suitable.
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Fig. 1. 4 paths generated for a donut-shaped object

A few authors have proposed to use different criteria to
classify paths [11], [14]. In this paper, we propose an algorithm
to construct a set of diverse paths based on the concept of path
visibility deformation [11], [19]. We generate a set of paths
that combines two desired properties: diversity and quality. In
our approach quality is path length. We ensure path quality
by defining a limiting factor by which the length of any path
in the set can exceed the optimal path length. Diversity is
ensured by generating candidate paths that go through selected
via points. From these candidate paths we select paths that
are non-visibility-deformable into each other and are far apart
from each other.

The rest of this paper is organized as follows. Section II
presents previous work relevant to path classification. Section
III explains some background concepts that link homotopy
with the deformation concept used in this paper. Section IV
presents our approach as well as the algorithms implemented.
Finally, section V presents experimental results showing di-
verse sets of paths generated for different test environments.

II. PREVIOUS WORK

Previous efforts to produce diverse paths have largely been
focused on homotopy. Early work on homotopy-based path
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Fig. 2. Comparison of homotopy in 2D and 3D



classification includes geometric-based approaches such as [8],
[9]. and methods based on Probabilistic Roadmaps [13], such
as the work of Schmitzberger [18], who proposed a method
to build PRMs that encode all the homotopy classes in 2D
environments. More recent approaches successfully identify
homotopy classes and their corresponding optimal paths in
2D discretized scenarios. Examples of these are [1], which
characterize the homotopy classes by using Complex Analysis.
A rather simpler approach, proposed by Igarashi in [10] uses
overlapped manifolds to represent homotopy classes for cabled
robots. Additionally, a few approaches (PRM-based) departed
from the strict context of homotopy and instead proposed to
include cycles in the map construction step in order to consider
more than one possible path between two configurations [6],
[16].

On the side of 3D path classification, Battacharya presented
in [2] a planner that identify homotopy classes and produces
optimal paths for each of them. However, as it was noted
in [16], finding paths in different homotopy classes may fail
to capture the variety of existing representative paths since
they might belong to the same homotopy class but still be
hard to deform into one another: A 3D scene with multiple
finite obstacles can easily have only one homotopic family. In
general, homotopy classes in three dimensions can be induced
only by objects with infinite dimensions in two directions or
by objects with holes on them [2].

Alternative approaches not based on homotopy have been
proposed to generate diverse paths. In [11], Jaillet presented a
PRM-based approach to produce diverse paths based on path
deformability, which consider less strong (easier) deformations
than homotopy. This method is applicable for higher dimen-
sions (such as 3D) but since it is a probabilistic approach, it
can neither guarantee that the paths produced will be bounded
in length nor that they will be the same each time they are
generated.

The term path diversity has also been used by [7] to
define path sets and extensions of this work applied to offline
generation of local paths are presented in [14]. Under this
approach, a set of paths is called diverse if it minimizes the
dispersion metric between them. Our approach is similar to
[7] in the sense that our algorithm produces a sequence of
paths that attempts to maximize the diversity between them.
In our context, diversity is quantified by the accumulated
distance between a path and the rest of paths in the set, not
by dispersion (although these metrics are related). Another
important difference is that [7] generates an initial set of paths
by combining any set of discrete inputs in a given model.
While we also generate a initial set of candidate paths, our
approach is different: We discretize our 3D environment into
a 26-connected graph and then generate a set of paths bounded
in length by using a graph-search based method (as it will be
explained later in Section IV).

III. BACKGROUND

We will briefly review the concept of homotopy [15] and
path deformability [11].
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Fig. 3. Deformation examples

A. Homotopy

Definition 1: Let Py and P; be two paths in a topological
space X with the same initial point py = Py(0) = P;(0) and
terminal point p; = Py(1) = P;(1). P, is said to be homotopic
to P, if there is a continuous function H : I2 — X such that

H(0,1) = po 0<t<1
H(1,t)=p 0<t<1 0
H(z,0) = Py(x) 0<z<1
H(z,1) = Py(x) 0<z<1

where the function H is called a homotopy connecting Py to
P.

Notice that H represents any continuous function, which
in turn may produce very complex deformations. For practical
uses, however, we want to consider only simpler deformations,
which are more likely to occur. Jaillet et al introduced the
concept of K-order deformations [11], which we borrow here
and explain below:

B. K-order Deformations

Definition 2: A K-order deformation is a particular homo-
topic deformation such that each curve transforming a point
from Py into a point of P, is an angle line of K segments

Figures 3(a) and 3(b) show a 1% and 2" order deforma-
tions respectively. In general, a K-order deformation can be
obtained from the concatenation of K ruled surfaces.

In this paper we consider 1% order deformations (also
called visibility deformations). Among other reasons, these
deformations are important since:

o They capture the visibility between two paths: If a path
Py can be deformed into a path P; with a first-order
deformation, then the corresponding points between both
paths are visible, meaning that a straight line can join
them without crossing any obstacle.

¢ Given two simple paths in a discretized environment,
we can determine if they are first-order deformable by
simply applying collision-testing to the lines that join
their corresponding points.

IV. ALGORITHM

The algorithm works by pruning and selecting paths from
an initial set of candidate paths. Section IV-A describes the
generation of the set of candidate paths. Section IV-B filters
the set of candidate paths to only include high-quality paths
of bounded length. Section IV-C describes how we select a
diverse set of paths from the set of bounded paths.



A. Candidate Paths

A possible set of candidate paths would be the set of all
possible simple paths (i. e. paths without loops) between the
given start and goal. However, calculating the number of paths
between two given vertices in a graph is #P-complete [17],
so it would be computationally expensive to enumerate all
these paths. We could also attempt to frame the generation
of the candidate paths as a K shortest simple paths problem.
However, besides being also computationally intensive [12],
we do not know how many paths will be in the set beforehand.

Instead, we calculate the shortest paths from vseart t0 Vgoal
through one waypoint v for all vertices v € V. Since the
number of paths generated this way is still big, we further
restrict the selection of v to vertices that are roughly middle
points in the paths to-be-generated (line 2 of Alg.1). We
could have also considered shortest paths through two or more
waypoints. If the number of waypoints was unlimited, we
would actually find all possible simple paths (and also some
non-simple ones). By choosing the number of waypoints we
trade-off complexity and completeness. We choose to consider
only a single waypoint because that makes it especially simple
to calculate all candidate paths. We only need to execute two
Dijkstra searches [5] rooted at gy and vgoa. This gives us
the distances and shortest paths from every vertex v to Ve
and vgo. Concatenating the two yields the shortest paths from
Ustart 1O Vgoal through a vertex v.

B. Bounded Paths

In order to ensure the quality of the paths in the set, we
filter out all paths in the candidate set that exceed the length
of the optimal path by a certain factor. We only retain paths
that satisfy

[|Pi|| < agPy,Vi€ [1,n] ()

The set of candidate paths as described in Section IV-A
is actually never explicitly calculated. Instead, the candidate
paths are filtered from the beginning to only include paths
that satisfy Eq. 2. Algorithm 1 combines the two steps of
generating the candidate paths and filtering out paths that
do not satisfy the bound on path length. Dy and Doy
are data structures representing the result of the Dijkstra
searches rooted at the Vgar and vgea respectively. Diar(v) is
the distance of v from vgyy. P is the shortest path from vy
t0 Vgoa and «vp is the maximum factor by which the paths are
allowed to exceed the optimal path length.

An example of a set of bounded paths generated using this
approach is shown in Fig. 4.

C. Diverse Paths

From the set of bounded paths we iteratively build the set of
diverse paths by choosing one path P; from the set of bounded
paths and add it to the set of diverse paths P until we reached
the desired number of paths. In each step we pick the one path
that

o maximizes the distance to all the

P,P, P, ..., P,_; already in the set
paths and that

other paths
of diverse

Algorithm 1: Get Bounded Paths
Input: Dy, Dgoal, P, ap
Output: Pp

1 forall the v € V do

2 if Dyar(v) = Dgou(v) then

3 if Dyar(v) + Dgou(v) < ap - P.size then
4 P, < getShortestPath (v, Dyuy)
5

6

7

P,y < getShortestPath (v, Dgour) ;
P + concatenate (Psy, Pyg) ;
PB.add(P) 5

8 return Pp ;

Fig. 4. Sample set of paths in Pp

e is not visibility-deformable into any of the other paths
that are already in the set of diverse paths.

Definition 3: Given two paths P4 and Pp and a given
number of waypoints cp, we define the distance & between
these two paths as:

cp
8(Pa, Pp) =Y d(ph,p) 3)
=1

Algorithm 2 shows the main high-level routine to produce
diverse paths. It receives as inputs the start and goal positions
(Ustart> Vgoal), the graph representation of the 3D space (G) and
the number of paths desired (the algorithm stops if it cannot
find more non-visibility-deformable paths, so this parameter
1S a maximum).

Our algorithm first precomputes the distances and shortest
paths from every vertex to the start and goal vertices using
Dijkstra’s algorithm. We then calculate the shortest path be-
tween g and Vg, Which is added as the first path (Pp)
in our path set P and defines the upper bound on the length
of all considered paths. The generation of bounded paths is
performed in line 4 of Alg. 2.

Once we have the initial set of bounded paths Pp, we se-
quentially produce paths P; that are non-visibility-deformable
with respect to the existing paths Py, P, P, ..., P;,_;. To make
sure that each new path generated will be non-visibility-
deformable with respect to the previous paths, we prune the set
of bounded paths at each iteration( line 7 of Alg. 2) such that
the bounded paths considered at each step ¢ are non-visible
wrt P_q.



Algorithm 2: Generate Diverse Paths

Input: vgar, Vgoul, G, 1
Output: P //set of paths non-visibility-deformable

Dyt < Dijkstra (Vgam G);
Dgoal < Dijkstra (Vgoal, g);
Py + getShortestPath (Vs Dgoar) s
P.add(Py);
Pp + getBoundedPaths (D Dgoar, P1, aB);
for ; < 2 to n do
Pp <+ getNoDeformPaths (Pp, Pi_1, cp);
if Pp # () then

P; < getMaxDistancePath (Pp);
L P.add(P;);

else
L break;
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return P;

Algorithm 3 shows the process that prune the existing Pp
with respect to P;. The algorithm tests each path P € Pp
against P; and prune it if it they are visible w.r.t. each other. To
determine visibility our algorithm builds a discretized ruled-
surface between paths P and P; and test if there is any obstacle
between them. If there is an obstacle, then the path is preserved
(since it is not visible). If there is not, then the path is pruned.
Figure 5 shows the evolution of the pruning process: The green
dots represents the middle points of the paths in Pg after each
iteration. As it can be seen, the number of paths considered
decreases at each step since a new path is added and hence
the visible paths w.r.t. it must be pruned.

The visibility test is shown in line 5 of Algorithm 3. The
FreeLine function receives as input a pair of corresponding
points of paths P and P;, which are generated by equally
dividing each of these paths in cp segments (lines 1 and 3
of Alg. 3). If any of the points in the line joining these
corresponding points is not free then the whole line is deemed
non-visible (a visualization of this process is shown in Fig. 6).

Finally, once the test of visibility is done, a new set of
non-visibility-deformable paths has been generated. In order
to select one of them to be the next P; to be added to P,
we choose the path P € Pp that have the maximum added
distance (&) with respect to P;_; (line 9 of Alg. 2).

(@i=1 (b)yi=2 (c)t=3 di=4

Fig. 5. Pruning visualization: After a path P; is added to PP the paths in
Pp is decreased. Notice how the surviving paths agglomerate to the sides of
the obstacle that are opposed to P; (not shown)

(a) No obstacles between paths (b) Obstacle between paths

Fig. 6. Example of visibility test procedure: Green lines represent free
visibility lines and red lines are not visible due to the presence of obstacles.
Blue markers represents the checkpoints (Cy[i] and Cjcr[i]) of each path
tested)

Algorithm 3: Get Non-Deformable Paths
Input: Pp, Py, cp
Output: Pp ;

// Non-Deformable paths
1 Cref < getCheckpoints (Prey, cp) ;
2 forall the P € Py do

3 Cp < getCheckpoints (P, cp) ;

4 for : + 1 to cp do

5 if isFreeLine (Creyli], Cpli]) is false then
6 PD.add(P) 5

7 L break ;

V. EXPERIMENTS

To assess the variety of paths produced by our algorithm we
produced a set of tests with different obstacle configurations.

In all the experiments the graph G that represents the
3D environment was discretized to voxels of 1.25 cmx1.25
cmx1.25 cm in a volume of 1 mx1 mx1 m (512000 voxels).

The line evaluation of the visibility test(line 5 of Alg.3)
was implemented using the Bresenham’s algorithm [4] which
is a simple yet effective method to calculate which points
in the discretized space are part of a line. We preferred this
method over other popular, more exact methods (such as Wu’s
Algorithm [20]) since it is simpler to implement and has higher
speed.

We present the results of 5 experiments in which we used
box-shaped objects as obstacles. Since these objects are finite
and have neither holes nor handles, they do not arise different
homotopy classes, so all paths presented are homotopically
equivalent (with the exception of test 1 which has an obstacle
with a hole, hence it presents two homotopy classes). The
paths obtained are shown in Fig. 7, 8, 9, 10 and 11

Comparison of path lengths is presented in Table I. Due to
the bound in length, only paths short enough are considered.
Notice that for Experiments 3 and 7 we only present three
paths that are non-visible with respect to each other (due
to the particular geometry of the tested environment). For
all experiments we used a bound factor g = 2.0 and 10
checkpoints (cp) to measure line collisions.



TABLE I
PATH LENGTHS

Length(cm)

Test Py Py Ps3 Py Ps
Test 1 80.6 108.6 113.2 122.6 124.9
Test 2 64.0 89.8 102.8 104.8 105.6
Test 3 64.0 111.6 113.6 - -
Test 7 82.3 86.8 89.0 - -
Test 8 60.8 61.4 70.7 74.4 -

Table II shows the size of the Pp set at each iteration <.

It is important to observe that the paths are calculated only

once (at the start of the algorithm). The pruning then is only
important to limit the number of visibility checks to generate
the new path P;.

TABLE II
PATH PRUNING

Size of (Pruned) Ppg at each iteration %
Test 1 =1 7 =2 =3 i =4 i=25
Test 1 8544 7441 3963 901 462
Test 2 7650 3130 1731 1185 611
Test 3 8633 1041 628 - -
Test 7 15335 4362 261 - -
Test 8 | 21038 | 20288 17514 | 12236 -

Table III shows the time distribution for the test cases.
Notice that the times could have been further reduced if we
required less diverse paths (in the test cases we found all
the possible paths that were non-visible with respect to each
other). Further, if time constraints are present, our algorithm
can be stopped at any time, having produced as many paths
as it was feasible.

TABLE III
TIME MEASUREMENTS

Time Distribution(seconds)

Test Dij. Start | Dij. Goal | Initial Path Set | Iter. Total
Test 1 0.64 0.65 1.35 2.77 5.62
Test 2 0.73 0.74 1.31 2.06 4.86
Test 3 0.70 0.71 1.61 1.67 4.70
Test 7 0.86 0.85 2.8 342 7.97
Test 8 0.80 0.80 3.81 739 | 12.87

VI. CONCLUSION AND FUTURE WORK

We have presented an algorithm to generate diverse paths in
3D environments. Our approach finds paths that are bounded
in length and cannot be deformed by means of visibility-
deformations from one to another. We also present a simple
yet effective distance cost to quantify the aggregated distance
between paths.

As future work, we would like to experiment with second-
order deformations and make a qualitative comparison with
the paths obtained with the method presented. Also we are
currently attempting to find better ways to generate the initial
set of paths X with the least possible number of paths that
are yet representative of the whole set of paths between vy
and Vgoar.

Fig. 7.
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Results of test 1: Paths around an object with a hole (2 homotopy

classes)
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Fig. 8. Results of test 2: U-shaped obstacle (1 homotopy class)
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