
Robot Limbo: Optimized Planning and Control for
Dynamically Stable Robots Under Vertical Obstacles

Kasemsit Teeyapan, Jiuguang Wang, Tobias Kunz, and Mike Stilman

Abstract— We present successful control strategies for dy-
namically stable robots that avoid low ceilings and other vertical
obstacles in a manner similar to limbo dances. Given the
parameters of the mission, including the goal and obstacle
dimensions, our method uses a sequential composition of IO-
linearized controllers and applies stochastic optimization to au-
tomatically compute the best controller gains and references, as
well as the times for switching between the different controllers.
We demonstrate this system through numerical simulations,
validation in a physics-based simulation environment, as well
as on a novel two-wheeled platform. The results show that the
generated control strategies are successful in mission planning
for this challenging problem domain and offer significant
advantages over hand-tuned alternatives.

Index Terms— dynamic limbo, sequential controller compo-
sition, stochastic optimization, two-wheeled balancing robot

I. INTRODUCTION

S earch and rescue robots that enter disaster areas will
need to go around fallen debris, go over rubble and go

under partially collapsed supports and hanging wires. The
former two types of navigation can be solved by existing
algorithms in motion planning [1–3] with stable and adaptive
control [4, 5]. However, passing under obstacles remains a
challenging open problem. We present multiple solutions for
dynamically stable robots that navigate underneath obstacles.
Furthermore, we use stochastic optimization to choose pa-
rameters for a sequence of controllers and times to switch
between the individual controllers.

Mobile manipulators and other tall robots with multiple
wheels such as Pearl [6], Xavier [7], and Minerva [8]
remain balanced due to their statically stable support struc-
tures. However, they cannot naturally duck under obstacles
since they easily become dynamically unstable when the
workspace is steep, or when the robots make abrupt changes
to their velocity. Furthermore, if the workspace is limited,
their navigation ability may be restricted due to a larger base
of support or a greater turn radius.

In contrast, robots like the Segway RMP [3], JOE [9],
uBot [10], Robonaut [11], and Ballbot [12] are dynamically
stable. Their method of stabilization is similar to that of
humans, allowing greater flexibility in control. When such
systems are affected by external disturbances, they dampen
the oscillations and gradually return to an equilibrium state.
These robots are consequently more robust to external forces
as well as rapid acceleration and deceleration. With only
one or two wheels, they possess a near-zero turn radius for

The authors are with the Center for Robotics and Intelligent Machines
(RIM) at the Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.
Email: {kasemsit, j.w, tobias, golem}@gatech.edu

(a) 1.0s (b) 1.9s

(c) 2.4s (d) 4.0s

Fig. 1. A two-wheeled robot executing the hand-tuned hybrid limbo motion.

Fig. 2. Time-lapsed simulation of the optimized hybrid limbo motion.

moving in a limited space. We show that dynamically stable
robots can also dynamically pass under obstacles.

This paper explores a novel autonomous planning algo-
rithm that allows a two-wheeled robot to generate a series
of motions to move or duck under an obstacle. The robot
is shown in Fig. 1. When the obstacle is not movable, a
statically stable robot might not accomplish this particular
task. With the dynamically stable capability, the robot’s
choice is either to lean forward or backward while it is
beneath the obstacle. In the latter case, the action is similar to
limbo, a West Indian dance in which a dancer leans backward
to go under a fixed-height stick.

To avoid the vertical obstacle, the robot motion is divided
into two stages and controlled by two separate controllers.
We present a hybrid controller as a sequential composition
[13] of two controllers that both use input-output (IO) feed-
back linearization [14] with different gains and references.
Consequently, this is a planning task where stochastic opti-
mization is used to decide the optimal switching boundary
and the parameters of each controller.

The rest of the paper is organized as follows: Section III
provides the state-representation for the system dynamics.
Section IV describes the controller design based on feedback
linearization. Section V gives an overview of the planner
formulated using stochastic optimization. The simulation and
experimental results are presented in Section VI while the
preliminary test done on the robot platform is described in
Section VII. Section VIII gives the concluding remarks and
directions for future work.

II. RELATED WORK

There exist numerous research studies on two-wheeled ma-
nipulators. However, they primarily focus on dynamics and
balance [9, 10, 15]. Since two-wheeled platforms are un-
deractuated they do not lend themselves to efficient control
methods such as feedback linearization. [16] showed that
linearization can be done around the active or passive joints,
referred to as collocated and non-collocated partial feedback
linearization. Yet, the general control problem remains an
active topic of investigation. Recent work describes position
and velocity control [17], pose control [18], as well as
adaptive approaches to motion control [19]. However, it
does not deals with motion strategies for robots that move
among obstacles. We are particularly interested in cases
where the obstacles are in the vertical position, hanging over
the workspace.

Recent work has demonstrated limbo with a humanoid
robot [20]. By applying genetic algorithms, this approach
succeeded in designing joint motions without significant
study of robot dynamics. Due to the complexity of the
platform, the generated motion was relatively slow and
potentially inefficient. Performance can be improved with
two-wheeled robots because of their increased agility. Robots
with wheels can achieve faster movements that can be
combined to complete maneuvers.

Although two-wheeled balancing platforms are well-
known to be nonlinear, a linear-quadratic (LQ) regulator is
widely used to solve the balancing problem as presented
in [15]. Since the controller is based on the linearized
system dynamics, the performance is reliable only around the
equilibrium. Partial feedback linearization is an alternative
control scheme that was explored in [17] and [18]. This
approach is more applicable to nonlinear systems, partic-
ularly when trying to control the tilt angle of the robot.
We apply the less complex input-output feedback lineariza-
tion (IO-linearization) which is adequate to control the tilt
angle of the robot as well as its position. We introduce a
sequential composition technique that merges a series of IO-
linearization controllers. Our method lowers computational
cost while providing better accuracy than other controllers
based on linear approximations of the dynamic system.

III. DYNAMIC MODEL

In this section, the dynamics of the robot are derived using
Lagrangian mechanics [21]. To simplify the problem, we
use the robot schematic shown in Fig. 3 corresponding to
the parameters in Table I. The subscripts 0 and 1 refer to
the robot’s wheels and body, respectively. The wheels have

(a) Schematic (b) Golem 1

Fig. 3. The schematic (a) of our two-wheeled robot (b).

TABLE I
LIST OF SYMBOLS

m0 Mass of the wheels
m1 Mass of the body
I0 Inertia of the wheels around the center of mass
I1 Inertia of the body around the axle of the wheels
r Wheel radius
` Distance from the wheel axis to the body’s center of mass
L Distance from the wheel axis to the top of the body
g Gravity
qw Rotation angle of the wheels w.r.t the world frame
q0 Rotation angle of the wheels w.r.t the robot body
q1 Tilt angle of the robot body
τ0 Motor torque

radius r and are driven by DC servo motors with encoders.
The posture of the complete system is described by the
angular position of the wheels qw and the inclination angle
of the robot’s body q1. However, for our system, the position
is measured by encoders on the motors. What we obtain is
therefore the angular position of the wheels relative to the
body, which we call q0. The relation between qw and q0 is
simply qw = q0 +q1.

In our problem formulation, we choose the generalized
coordinates of the system as q = [q0,q1] where q0 ∈ℜ and
q1 ∈ (−π

2 ,
π

2). We also define the generalized forces τ =
[τ0,0] such that τ0 ∈ℜ is the torque applied to the wheels.
The equations of motion are obtained from Lagrange’s
equation,

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= τi, i = 0,1 (1)

where L is the Lagrangian function and is computed from
the difference between the kinetic energy and the potential
energy of the system as L = T −U . The resulting dynamic
equations for our system are as follows:

τ0 = (q̈0 + q̈1)I +m1r`q̈1 cosq1−m1r`q̇2
1 sinq1 (2)

0 = (I + I1 +2m1r`cosq1)q̈1−gm1`sinq1

+(I +m1r`cosq1)q̈0−m1r`q̇2
1 sinq1 (3)

where I = I0+(m0+m1)r2. These equations are second-order
nonlinear differential equations of the form

M(q)+V(q, q̈) = τ, (4)

where M(q) is the inertia matrix. V(q, q̈) represents corio-
lis/centrifugal terms and gravity forces.

Rewriting the dynamics equations in the state-space rep-
resentation yields Eq. 5,

ẋ = F(x,u) = f(x)+g(x)u, (5)

where x =
[

x1 x2 x3 x4
]T is the state vector and u

is the scalar input. By choosing x1 = q0, x2 = q̇0, x3 = q1,
x4 = q̇1, and u = τ0, we obtain

f(x) =

x2

(f [2]− f [4])/∆

x4
f [4]/∆

 , g(x) =

0

(g[2]−g[4])/∆

0
g[4]/∆

 (6)

The values of f [2], f [4], g[2], g[4], and ∆ are shown in the
appendix. We found that the equilibrium state of the system
is a set x̄ =

[
x1 0 0 0

]T which means that the robot
is standing upright at any horizontal position.

IV. CONTROL

Input-output feedback linearization [14] is a common ap-
proach to the control of nonlinear systems. In this section, we
present a generic controller enabling the robot to move/duck
under the obstacle or balance at the desired position.

Consider the dynamics equations in (2) and (3). We
can solve (3) for q̈0. By substituting it into (2), q0 and
its derivatives in (2) can be completely eliminated. As a
result, τ0 can be rewritten as a function of only q1 and its
derivatives, yielding the following forms of (2):

τ0 = f1(q1)q̈1 + f2(q1, q̇1) (7)

or
u = f1(x3)ÿ+ f2(x3,x4). (8)

f1 is a function of x3, and f2 is a function of x3 and x4.
Equation (8) represents an explicit relationship between

the state variables and the input torque. We design a con-
troller that can either achieve a target position or a target tilt
angle of the robot.

Let the desired goals of the controller be the position δ1 ∈
ℜ and the tilt angle δ3 ∈ (−π

2 ,
π

2). The double integrator term
ÿ can be linearized by state errors,

ÿ =−k1(x1−δ1)− k2x2− k3(x3−δ3)− k4x4. (9)

As a result, the combination of (8) and (9) provides us with a
general controller for the horizontal position and the tilt angle
of the robot. However, we cannot keep a desired position and
a tilt angle different from zero at the same time. Instead we
choose to control one of them. To control only the tilt angle,
we set k1 and k2 to zero and the robot is expected to keep
accelerating in order to maintain a specific tilt angle δ3. On
the other hand, to control the position, the desired tilt angle
δ3 is chosen to be zero to allow the robot to balance at the
horizontal position δ1.

In this paper, the hybrid controller, is a sequential compo-
sition of general controllers with distinct parameterizations.
Each controller performs a different function and no single
controller can easily satisfy the entire task. It is more
effective for the robot to switch between control strategies
depending on whether it needs to control the horizontal
position or the tilt angle.

Fig. 4. Starting point, goal, and obstacle

V. PERFORMANCE OPTIMIZATION

A. Overview

Using the proposed feedback linearization controller from
the previous section, we can achieve any desired tilt angle
in order to duck under obstacles. However, there are many
possible actions the robot might select in order to complete a
particular ducking/limbo maneuver. Therefore, it is unclear
exactly which set of reference angles and control parame-
ters are optimal for a given situation. Using performance
optimization methods, we seek to compute a set of control
actions that minimize a predefined cost over a broad space
of gains and parameters for the controllers. In this work,
we focus on framing the optimization problem on top of
the existing controller, keeping the same structural design
but varying the controller parameters through stochastic
optimization for performance improvements.

We selected a particular method called Particle Swarm
Optimization (PSO) [22, 23], a stochastic, population-based
evolutionary computing technique inspired by social inter-
action. PSO designs trajectories for a group of potential
solutions called “particles”, which traverse the solution space
simultaneously and search for extrema points. Unlike tra-
ditional optimization algorithms that rely on gradient in-
formation, PSO does not explicitly compute the gradient
but rather estimates the search direction through interactions
with neighboring particles. At each time instance, a fitness
function evaluates the quality of the solution obtained by
each particle and shares the value with neighboring particles.
Each particles is attracted to its own best solution as well as
the group’s best solution such that over time, the group as a
whole is drawn stochastically towards the global optimum.

Previously, we have successfully applied PSO in both
linear and nonlinear control designs. [24, 25] While the
dynamics of the system in this implementation are not as
challenging as those of our previous systems, the combined
parameter space for the controllers is much larger due to the
sequential composition of multiple controller instances. The
composition results in a difficult, large-scale optimization
problem. Since the merits of PSO lie in its ability to quickly
converge to globally optimal solutions, even in large and
non-convex solution spaces, ducking/limbo under obstacles
is a particularly suitable application. The lack of dependence
on gradients bypasses a computationally expensive process
and the use of multiple particles ensures that the algorithm is
not easily trapped in local minima. Our approach can also be
parallelized in future applications that require greater speed.

TABLE II
SIMULATION PARAMETERS

(a) Robot parameters
m0 3.139 kg r 0.23 m
m1 67.8 kg ` 0.0762 m
I0 0.1661 kg m2 L 0.7834 m
I1 1.21 kg m2 g 9.81 m/s2

(b) Obstacle parameters
Scenerio I Scenerio II

d1 2.0 m d1 8.0 m
d2 1.0 m d2 0.5 m
d3 7.0 m d3 1.5 m
h 0.75 m h 0.65 m

B. Formulation

Consider the scenario in Fig. 4 where the robot is initially
balancing at point A and its mission is to reach point B. The
path is partially blocked by an obstacle of length d2 at a
height h above the ground. Assume that the robot is taller
than the height of the obstacle and there is no better way to
reach the destination than passing under it.

In this scenario, we split the motion of the robot into
two stages controlled by two separate controllers. Let ki j
represent the gain k j in stage i, and similarly, δi j is the
reference δ j in stage i. During the first stage, feedback
linearization with tilt control is in action. The controller
gains involved in this stage are therefore k13 and k14. The
corresponding reference angle is δ13. In the last stage, IO-
linearization with position control is applied to allow the
robot to stop at the goal. The controller parameters involved
in this stage are k21, k22, k23, k24, and δ21. The reference δ21
is the desired stopping position equal to d1 + d2 + d3. Our
planner designs a combination of these two stages resulting
in a sequential composition of the two controllers. Since
deciding when to switch the controllers is also important to
help the robot reach the goal, we denote d12 as the horizontal
distance from the starting point to make the transition from
stage one to stage two.

There is an continuous space of possibilities for the values
of all controller parameters. However, some of them are
invalid since they make the robot collide with the obstacle
or the ground. In addition, we are looking for parameters
that minimize a pre-defined cost. Therefore, at this point,
PSO plays a significant role in searching for the best set of
parameters. We define a combined cost function consisting
of two parts: the total squared control effort J1, and the total
time to complete the maneuver J2 as shown in (10).

J = J1 +βJ2 (10)

β is a weight scalar. When T denotes the total time, we have

J1 =
∫ T

0
τ

2
0 (t)dt, J2 = T. (11)

Control parameters that lead to a collision have infinite cost.
The set of optimal parameters we seek are thus ki j for all
i and j, δ13, and d12. Using PSO, the parameters under
consideration are encoded within particles, with appropriate
restrictions placed as boundaries for the search space. Twenty

TABLE III
RESULTS

(a) Controller parameters: Hand-tuned VS. PSO

Parameters Scenario I Scenario II
Hand-tunded PSO Hand-tuned PSO

k13 40 176.11 40 188.93
k14 20 143.71 20 200.00
k21 4 5.8398 3 3.6623
k22 6 12.685 6 5.5288
k23 40 100.00 43 35.626
k24 16 41.689 20 15.884

x3d [rad] 1.0996 1.1924 0.6109 0.7136
d12 [m] 3 2.9289 5 4.5383

(b) Cost: Hand-tunded VS. PSO

Parameters Hand-tuned PSO
J J1 J2 J J1 J2

Scenerio I 8036 6032 10.0 7656 5826 9.1
Scenerio II 6963 4425 12.7 5837 4267 7.8

particles are used in the search, initialized randomly within
the search space. The algorithm iterates for a fixed number
of iterations and returns the best solution found.

VI. SIMULATION AND RESULTS

The performance of the optimized controllers was evaluated
relative to a set of hand-tuned parameters. Parameter selec-
tion was first done by manual tuning followed by PSO. We
conducted experiments for two different cases, Scenario I
and Scenario II, using MATLAB and SNU Robotics Library
(srLib) [26], a physics-based simulation library. In Scenario I,
the obstacle position is close to the stating point. In Scenario
II it is close to the goal. The simulation parameters are shown
in Table II. Table III presents the set of parameters returned
from PSO and the other set determined by trial and error. The
overall costs are also compared in Table III(b). Since the real
robot differs from our original skeleton model in thickness
of the body, additional margins were added to the size of the
obstacle to compensate for such errors as indicated by the
virtual obstacle.

In Scenario I, an obstacle with 1.0 meter length was
placed close to the starting position. The robot autonomously
decided to perform a ducking action. This is reasonable since
the obstacle is so close that the robot just leaned forward and
passed under it as illustrated from the optimized result in Fig.
5(b). It is hard to achieve a low cost by trial and error since
all six gains and references need to be selected in a way
that provides a smooth, stable, and collision-free trajectory
for all the stages. From the result, PSO provides superior
performance to hand tuning in terms of the overall cost, or
even the total squared control effort and the total time to
reach the goal. Although PSO took around 15 minutes to
return the optimal solution, the trial-and-error approach can
take far longer to obtain a good result since it relies heavily
on the experience of the operator.

In Scenario II, the position of the 0.5m-long obstacle was
further away from the robot and close to the goal. One choice
of strategies for the robot could again be ducking. However,
this is not the best choice since the overall torque is critical
in our consideration. Leaning forward with IO-linearization

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Position [m]

h
[m

]

Robot’s top: PSO
Robot’s top: Hand−tuned
Actual obstacle
Virtual obstacle

(a) Trajectories of the robot’s top: Hand-tuned VS. PSO

(b) srLib simulation with optimized parameters

Fig. 5. Simulation in MATLAB and srLib for Scenario I (Ducking). An
obstacle of length 1m was placed close to the starting point and the resulting
motion plan choose to lean forward (duck) to pass under the obstacle.

accelerates the robot. In this case, the velocity would be very
high and would require a lot of torque to stop after it has
passed under the obstacle. PSO returned a set of parameters
that results in the robot performing a limbo action as we
expected. The successful result is shown in Fig. 6(b) and
the overall costs in Table III(b) support the effectiveness of
PSO, similar to the results from Scenario I. According to Fig.
6(a), the manual-tuned trajectory is nearly identical to the
result by PSO as the trajectory is very close to the obstacle
edges. Yet, Table III(b) shows that the hand-tuned controller
performs significantly worse than autonomous optimization,
especially in terms of time. These results show that PSO
yields superior performance to hand-tuning since it provides
better parameters without the need for trial and error.

Observe that the sequential controller specifications used
in both cases are identical. PSO develops two entirely
different strategies from this simple basis. In Scenario II the
controller in the last stage is not just a stopping controller.
The robot uses the same controller to travel under the
obstacle. This is unlike the ducking in Scenario I. We classify
the robot action into three parts. The first part is the first
stage where the robot moves forward. The second and the
third parts compose the second stage of limbo where the
robot leaned backward to exploit its own dynamics to pass
the obstacle and stop in an equilibrium state at the goal. This
implies that the limbo strategy provided a better maneuver
in terms of the total cost to accomplish the mission.

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Position [m]

h
[m

]

Robot’s top: PSO
Robot’s top: Hand−tuned
Actual obstacle
Virtual obstacle

(a) Trajectories of the robot’s top: Hand-tuned VS. PSO

(b) srLib simulation with optimized parameter

Fig. 6. Simulation in MATLAB and srLib for Scenario II (Limbo). An
obstacle of length 0.5m was placed close to the goal and the resulting motion
plan choose a limbo maneuver to pass under the obstacle.

VII. EXPERIMENTAL PLATFORM

Preliminary tests were conducted to study the validity of
the dynamics and controllers. The experimental platform
was a two-wheeled mobile robot, shown in Fig. 3. The
robot is part of a larger wheeled humanoid developed by
the Humanoid Robotics Lab at Georgia Tech [27]. It was
equipped with an inertia measurement unit (IMU) and DC
motors with encoders. Sensor data were Kalman filtered to
estimate positions and velocities for wheels and robot tilt.

Experiments were performed without external sensors in
order to verify that the distinct sequences of controllers could
be applied in a physical system. Confirmation was completed
in both individual controller tests as well as the sequential
compositions for both ducking and limbo missions. The
sample video sequences for limbo are presented in Fig. 1.
Fig. 7 shows the tilt angle and velocity as well as the torque
applied by the motors.

VIII. CONCLUSION

In this paper, we presented a sequential composition control
design using a combination of two identical IO-linearization
controllers that achieved entirely different motions for a two-
wheeled robot when avoiding vertical obstacles. Stochastic
optimization was applied in order to select the controller
parameters and the appropriate time to switch the controllers.
This yielded improved performance over manually-tuned
parameters. With the combination of these simple compo-
nents, the robot autonomously generated ducking and limbo

times [s]

Fig. 7. Data collected from the actual robot performing limbo in Fig. 1

behaviors depending on whether the obstacle was close to
the starting point or the goal, respectively.

Future work on this topic will incorporate sensing through
vision and a laser scanner. We will also extend the method
to handle multiple obstacles. In order to improve the perfor-
mance of the controller, adaptive control approaches will be
applied to make the robot more robust to uncertainty.

APPENDIX

Detailed expressions for (6) in Section III:

f [2] = m1r`I1x2
4 sin(x3)−m2

1r`2gsin(x3)cos(x3) (12)
g[2] = I1 +m1r`cos(x3) (13)

f [4] = m1g`I sin(x3)−m2
1r2`2x2

4 sin(x3)cos(x3) (14)
g[4] =−I−m1r`cos(x3) (15)

∆ = I1I−m2
1r2`2 cos2(x3) (16)

I = I0 +(m0 +m1)r2 (17)

ACKNOWLEDGMENTS

The authors are grateful to Ray Marceau for his contributions
to the development of the robot and the experiments. We also
thank the two anonymous reviewers for their comments and
suggestions on an earlier version of this manuscript.

REFERENCES

[1] M. Montemerlo and S. Thrun, “A multi-resolution pyramid for outdoor
robot terrain perception,” in National Conference on Artificial Intel-
ligence. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2004, pp. 464–469.

[2] M. Kobilarov and G. Sukhatme, “Time optimal path planning on out-
door terrain for mobile robots under dynamic constraints,” University
of Southern California Technical Report CRES-04-009, 2004.

[3] C. Ye and J. Borenstein, “Obstacle avoidance for the segway robotic
mobility platform,” in ANS 10th Int. Conf. on Robotics and Remote
Systems for Hazardous Environments, 2004, pp. 107–114.

[4] J. Kim and J. Oh, “Realization of dynamic walking for the humanoid
robot platform KHR-1,” Advanced Robotics, vol. 18, no. 7, pp. 749–
768, 2004.

[5] H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro,
M. Morisawa, and S. Nakaoka, “A pattern generator of humanoid
robots walking on a rough terrain,” in 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 2181–2187.

[6] M. Pollack, L. Brown, D. Colbry, C. Orosz, B. Peintner, S. Ramakr-
ishnan, S. Engberg, J. Matthews, J. Dunbar-Jacob, C. McCarthy et al.,
“Pearl: A mobile robotic assistant for the elderly,” in AAAI workshop
on automation as Eldercare, vol. 2002, 2002.

[7] R. Simmons, R. Goodwin, S. Koenig, J. O’Sullivan, and G. Arm-
strong, “Xavier: An Autonomous Mobile Robot on the Web,” Beyond
Webcams: an introduction to online robots, p. 81, 2001.

[8] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Haehnel, C. Rosenberg, N. Roy, J. Schulte et al., “MINERVA:
A second generation mobile tour-guide robot,” in IEEE International
Conference on Robotics and Automation (ICRA), 1999.

[9] F. Grasser, A. D’ Arrigo, S. Colombi, and A. Rufer, “JOE: a mobile,
inverted pendulum,” IEEE Transactions on industrial electronics,
vol. 49, no. 1, pp. 107–114, 2002.

[10] P. Deegan, B. Thibodeau, and R. Grupen, “Designing a self-stabilizing
robot for dynamic mobile manipulation,” in Robotics: Science and
Systems-Workshop on Manipulation for Human Environments, 2006.

[11] R. Ambrose, R. Savely, S. Goza, P. Strawser, M. Diftler, I. Spain, and
N. Radford, “Mobile manipulation using NASA’s robonaut,” in 2004
IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04, vol. 2, 2004.

[12] T. Lauwers, G. Kantor, and R. Hollis, “A dynamically stable single-
wheeled mobile robot with inverse mouse-ball drive,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, 2006, pp. 2884–2889.

[13] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition of
dynamically dexterous robot behaviors,” The International Journal of
Robotics Research, vol. 18, no. 6, p. 534, 1999.

[14] H. Khalil, Nonlinear systems. Prentice Hall, 2002.
[15] Y. Kim, S. Kim, and Y. Kwak, “Dynamic analysis of a nonholonomic

two-wheeled inverted pendulum robot,” Journal of Intelligent and
Robotic Systems, vol. 44, no. 1, pp. 25–46, 2005.

[16] M. Spong, “Partial feedback linearization of underactuated me-
chanical systems,” in Intelligent Robots and Systems’ 94.’Advanced
Robotic Systems and the Real World’, IROS’94. Proceedings of the
IEEE/RSJ/GI International Conference on, vol. 1, 1994.

[17] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control
of a wheeled inverted pendulum by partial feedback linearization,”
Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 505–513, June
2005.

[18] D. S. Nasrallah, H. Michalska, and J. Angeles, “Controllability and
posture control of a wheeled pendulum moving on an inclined plane,”
IEEE Transactions on Robotics, vol. 23, no. 3, pp. 564–577, 2007.

[19] Z. Li and J. Luo, “Adaptive Robust Dynamic Balance and Motion
Controls of Mobile Wheeled Inverted Pendulums,” IEEE Transactions
on Control Systems Technology, vol. 17, no. 1, pp. 233–241, 2009.

[20] D. Aydemir and H. Iba, “Evolutionary Behavior Acquisition for
Humanoid Robots,” Lecture Notes in Computer Science, vol. 4193,
p. 651, 2006.

[21] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. Wiley New Jersey, 2006.

[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, vol. 4, 1995.

[23] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[24] J. Wang, B. T. Brackett, and R. G. Harley, “Particle Swarm-Assisted
State Feedback Control: From Pole Selection to State Estimation,” in
2009 American Control Conference, June 2009.

[25] M. Stilman, J. Wang, K. Teeyapan, and R. Marceau, “Optimized
Control Strategies for Wheeled Humanoids and Mobile Manipulators,”
in 9th IEEE-RAS International Conference on Humanoid Robots,
Paris, France, December 2009.

[26] J. Haan, B. Kim, and J. Lee, “srLib - SNU Robotics Library,” June
2009. [Online]. Available: http://r-station.co.kr/srlib/index.html

[27] M. Stilman, J. Olson, and W. Gloss., “Golem Krang: Dynamically
Stable Humanoid Robot for Mobile Manipulation,” in 2010 IEEE
International Conference on Robotics and Automation, Anchorage,
Alaska, USA, May 2010.

